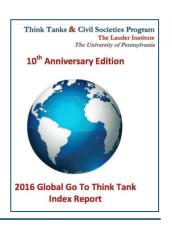
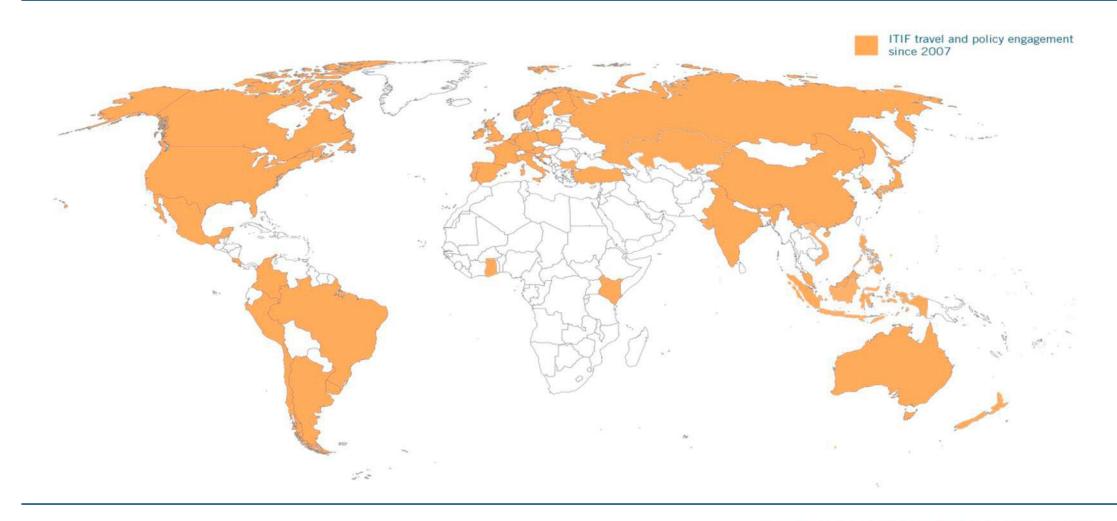
# THE COMING DIGITAL TECHNOLOGY LANDSCAPE, BREAKTHROUGHS, AND A GLIMPSE INTO THE FUTURE

# 2018 PIDS ANNUAL PUBLIC POLICY CONFERENCE

Stephen Ezell Vice President, Global Innovation Policy, ITIF


September 19, 2018






#### **ABOUT ITIF**

- The world's leading science and technology policy think tank.
- Supports policies driving global, innovation-based economic growth.
- Focuses on a host of issues at the intersection of technology innovation and public policy across several sectors:
  - Innovation and competitiveness
  - IT and data
  - Telecommunications
  - Trade and globalization
  - Life sciences, agricultural biotech, and energy



### ITIF GLOBAL ENGAGEMENT



### **TODAY'S PRESENTATION**

- ICTs Driving Global Economic Growth
- 2 Overview of Key Emerging Digital Technologies
- 3 How Digitalization is Transforming Industries
- 4 Policy Recommendations to Spur Digitalization



# ICT HAS BIG IMPACTS BECAUSE IT'S A GENERAL PURPOSE TECHNOLOGY

Approximately every half century a new technology *system* emerges that changes everything.

- The Railroad and Iron: 1840s.
- Electricity and Steel: 1890s
- Electromechanical Systems: 1950s

Today, ICT is enabling innovation and productivity in virtually all industries, from agriculture and manufacturing to services and government.



# ICT AND DIGITAL ARE DRIVING GLOBAL ECONOMIC GROWTH

- ICTs responsible for 25% of economic growth in developing countries from 2000-2010.
- The "digital economy" now accounts for 25% of global GDP.
- Half of all value created in next 10 years will be created digitally.



Sources: Accenture, "Digital Disruption: the Growth Multiplier"; McKinsey Global Institute, "Digital Globalization: The New Era of Global Flows"

# COMPETITION WAS ONCE CONFINED TO VERTICAL ICT INDUSTRY SECTORS

|                                                 | <b>Mainframe</b> | <u>Mini</u>  | PC        | <b>Mobile</b> |                      |
|-------------------------------------------------|------------------|--------------|-----------|---------------|----------------------|
|                                                 | <i>IBM</i>       | Digital      | IBM       | Apple         |                      |
|                                                 | Sperry           | IBM          | Apple     | Google        |                      |
|                                                 | Burroughs        | Data General | Intel     | RIM           |                      |
|                                                 | Honeywell        | Wang         | Microsoft | Arm           |                      |
|                                                 | NCR              | Prime        | Dell      | Samsung       |                      |
|                                                 | CDC              | HP           | HP        | HTC           |                      |
|                                                 | ICL              | Sun          | Compaq    | Motorola      |                      |
|                                                 | Amdahl           | Tandem       | Seagate   | Nokia         |                      |
|                                                 | Siemens          | Oracle       | Sony      | Ericsson      |                      |
|                                                 | Fujitsu          | Honeywell    | Toshiba   | Huawei        |                      |
|                                                 | Hitachi          | Olivetti     | Amstrad   | Sony          |                      |
|                                                 | Cray             | NEC          | Lenovo    | LG            | LO in Silicon Valley |
| Source: David Moschella, CSC Leading Edge Forum |                  |              |           |               |                      |

# NOW ICTS ENABLE DISRUPTION ACROSS VIRTUALLY ALL INDUSTRIES

#### Technology Disruptions

Artificial Intelligence (AI)

Data Analytics

Cloud Computing

Internet of Things (IoT)

Mobile Devices

Social Media

Supercomputing



- Transportation (*Uber*, Driverless Cars)
- Hospitality (*Airbnb*)
- Education (*Coursera*, MOOCs)
- Finance (Bitcoin, Algorithmic Trading)
- Life-sciences (Bio/IT Convergence)
- Manufacturing (3-D Printing)
- Retail (Amazon, Same-day Delivery)

Source: David Moschella, CSC Leading Edge Forum

### **TODAY'S PRESENTATION**

- 1 ICTs Driving Global Economic Growth
- 2 Overview of Key Emerging Digital Technologies
- 3 How Digitalization is Transforming Industries
- 4 Policy Implications to Spur Digitalization

### KEY EMERGING DIGITAL TECHNOLOGIES

- 1. Artificial Intelligence/Big Data
- 2. Autonomous Technologies/Robotics
- 3. Cloud Computing
- 4. The Internet of Things
- 5. Quantum Computing
- 6. Blockchain

#### WHAT IS ARTIFICIAL INTELLIGENCE?

- "Artificial intelligence" is the use of software to imitate intelligent human behavior, such as learning, reasoning, and making decisions.
- "Machine learning" refers to systems that can learn and improve from experience without being explicitly programmed with specific solutions.
- Al may generate \$13 trillion in global economic impact by 2025.





Sources: Daniel Castro and Josh New, "The Promise of Artificial Intelligence"; Accenture, "Why Artificial Intelligence is The Future of Growth"



### **HOW WILL AI/BIG DATA BE USED?**



### **Monitoring**

Rapidly analyze large amounts of data and detect abnormalities and patterns.



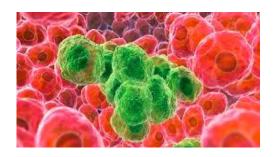
# **Discovering**

Extract insights from large data sets and discover solutions through simulations.





### **Predicting**


Forecast or model trends likely to develop in future (e.g., Netflix/weather).





### **Interpreting**

Interpret unstructured data, images, text (e.g., diagnostic software identifies cancer cells or analyzes X-rays to detect aneurysms).

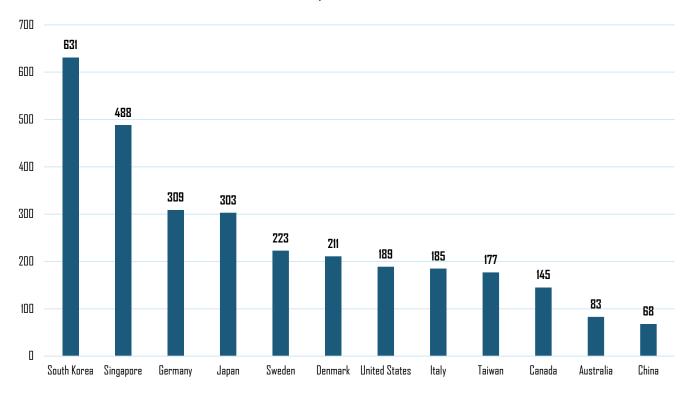


Source: Daniel Castro and Josh New, "The Promise of Artificial Intelligence"

#### **AUTONOMOUS VEHICLES**

For many, *driving* is the distraction.

AVs promise tremendous safety, personal mobility, environmental, productivity, and economic benefits.






Every major global automaker developing autonomous vehicles; deployments coming next 3-5 years.

#### **ROBOTS**

#### Industrial Robots per 10,000 Workers, 2017



Asia leading roboticization.

By 2020, 1.7 million new industrial robots deployed.

Payback period for industrial robot 1 year in the U.S., but over 30 in the Philippines.



Source: International Federation of Robotics, "Executive Summary World Robotics 2018 Industrial Robots"

### **CLOUD COMPUTING**

Delivery of scalable computing resources as an on-demand service.

- Computer storage or processing capacity; applications hosting.
- 96% of U.S. businesses use cloud computing.
- Expected to account for 60-70% of enterprise IT spend.



### THE INTERNET OF THINGS (IOT)



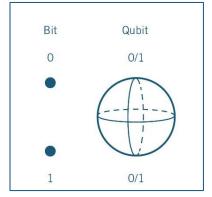











- The Internet of Things is the universe of physical objects embedded with sensors or actuators that are enhanced with network connectivity.
- Analysts expect 55 billion connected devices by 2025 will generate as much as \$11 trillion in annual economic value.

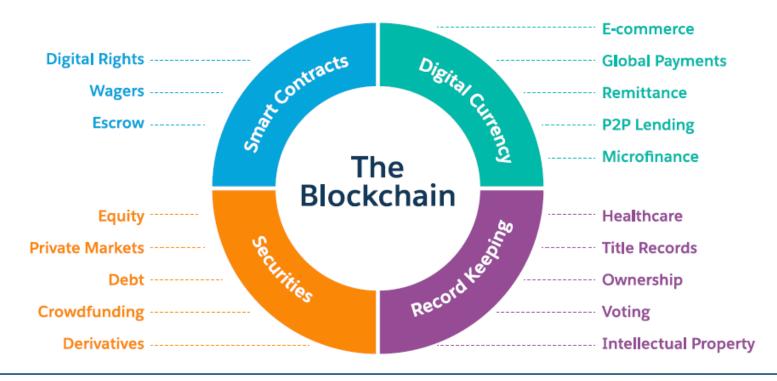
#### QUANTUM COMPUTING

Quantum computers use qubits that leverage quantum principles to make computers thousands of times more powerful than today's supercomputers.

IBM offers free, cloud-based quantum computing services; Google has a 128-QB quantum computer.

Some countries claim they can already detect stealth aircraft and submarines based on their unique "quantum signatures."





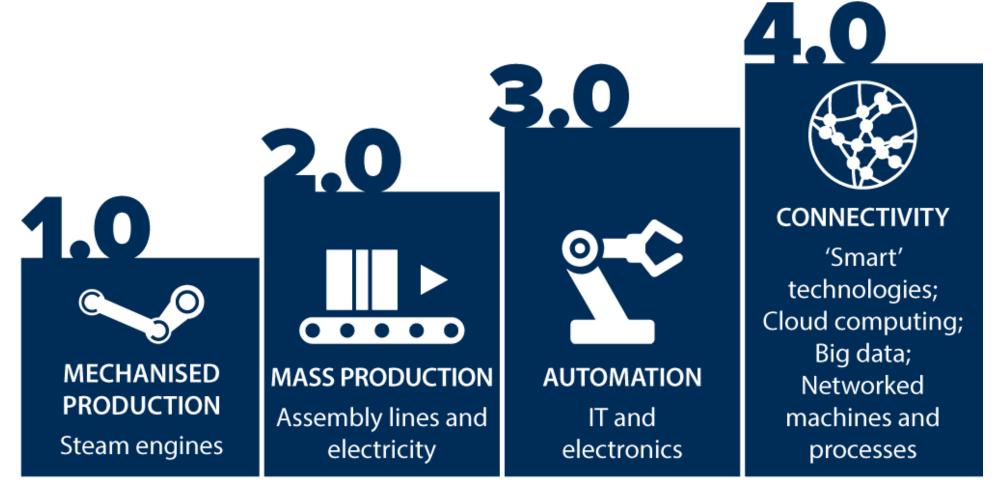



#### **BLOCKCHAIN**

• Shared, digital ledgers cataloging transactions as they occur in chronological order, using cryptography and public recording to validate transactions.

#### A new method for simultaneous, secure updates






### **TODAY'S PRESENTATION**

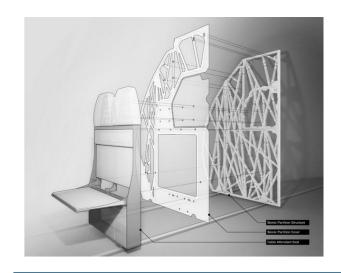
- 1 ICTs Driving Global Economic Growth
- 2 Overview of Key Emerging Digital Technologies

- 3 How Digitalization is Transforming Industries
- 4 Policy Recommendations to Spur Digitalization

# DIGITAL DRIVING THE FOURTH INDUSTRIAL REVOLUTION



Source: Oxford Analytica


# "DIGITALLY ENABLED" AT EACH STEP OF MANUFACTURING

- 1. Product Design
- 2. Fabrication and Assembly
- 3. Factory Integration
- 4. Supply Chain Integration
- 5. Product Use and Consumption



### **GENERATIVE DESIGN & 3 D PRINTING**

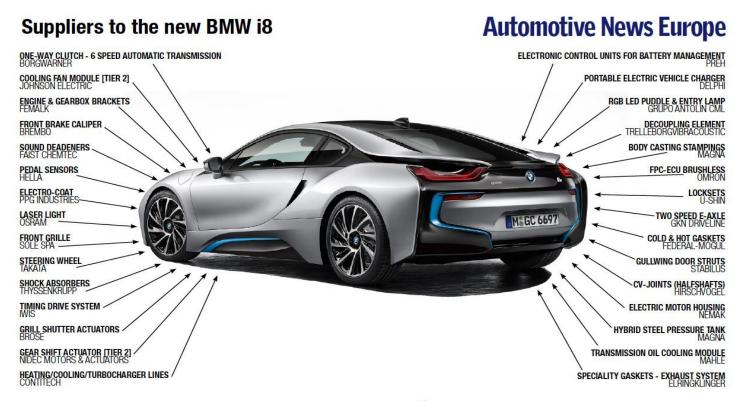
- Software designs products based by specified input constraints.
- Synthesizing successive layers of material into a three-dimensional solid object composed from a digital file.







### **FACTORY INTEGRATION**


 Sensor-enabling equipment generates a comprehensive, real-time view of the status of machines, work cells, and systems.





#### SUPPLY CHAIN MANAGEMENT

 Real-time visibility into every machine making every component across entire industrial supply chains.



# DIGITALLY ENABLED PRODUCT USE AND CONSUMPTION

"Product servicification": Products consumed as services.

E.g., Rolls Royce's "Power by the Hour" model. Generates \$1 billion new revenues annually.

"Digital twins" concept a key enabler.





# ECONOMIC IMPACTS OF MANUFACTURING DIGITALIZATION

- Generate \$10 trillion in value for the global economy by 2025.
- Will boost productivity of the world's factories 10 to 25%.
- Could add 1-1.5% to a nation's annual productivity growth.



Sources: McKinsey Global Institute, "The Internet of Things: Mapping the Value Beyond the Hype" GE, "Industrial Internet: Pushing the Boundaries of Minds and Machines"

### DIGITAL DRIVING LIFE SCIENCES INNOVATION



ICT powering precision medicine, gene editing, and earlier disease detection.

Over 7,000 new-to-the-world drugs in development.

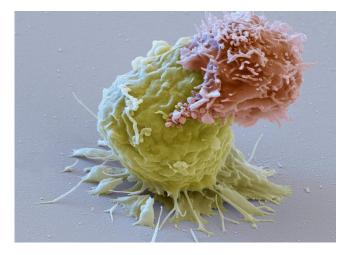
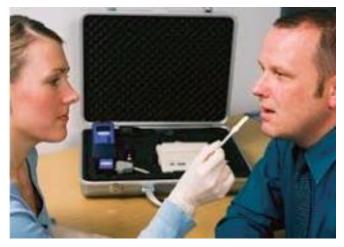
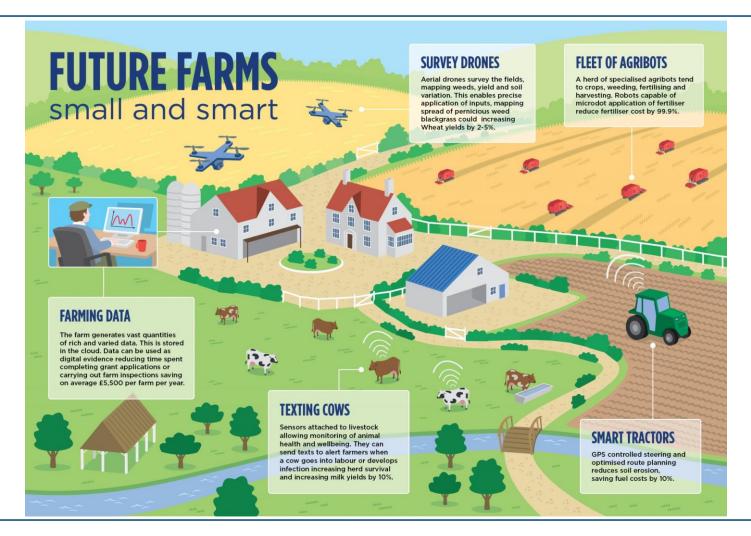
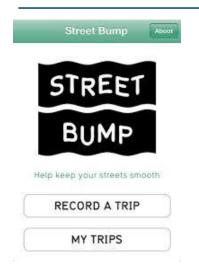




Image of a CAR-T cell (reddish) attacking a leukemia cell (green).




Gene editing can repair or replace corrupted or missing genes.




New tests claim to be able to detect cancer in 10 minutes from mouth swabs.

### DIGITAL DRIVING AGRICULTURAL INNOVATION



Source: NESTA

#### DRIVING THE TRANSFORMATION OF CITIES





#### **SMART CITY USE CASES**



WEATHER SENSORS









LIGHTS & CONTROLS



CHARGING

**ELECTRIC** VEHICLE **INVERTERS** 



SURVEILLANCE



Nuclear Power Plant

SMART GRID

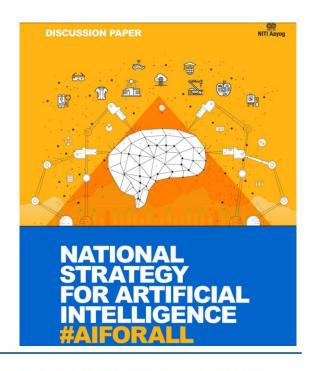
Wind Generator

Hydraulic Power Generation

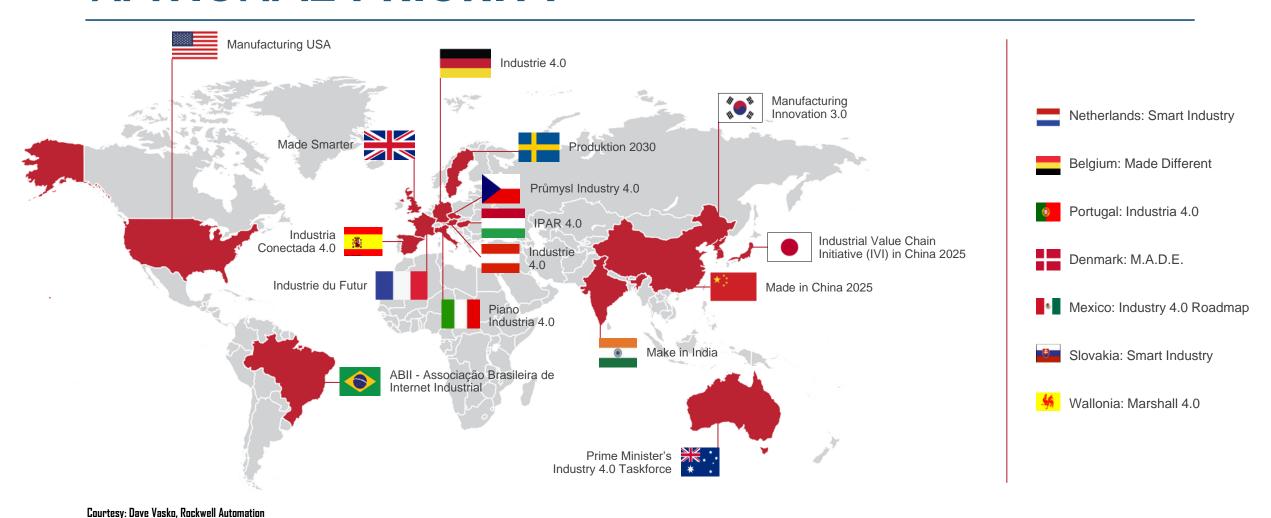




### **TODAY'S PRESENTATION**

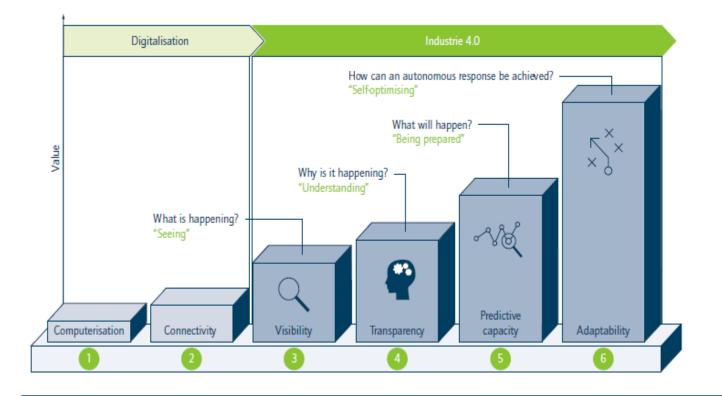

- 1 ICTs Driving Global Economic Growth
- 2 Overview of Key Emerging Digital Technologies
- 3 How Digitalization is Transforming Industries
- 4 Policy Recommendations to Spur Digitalization

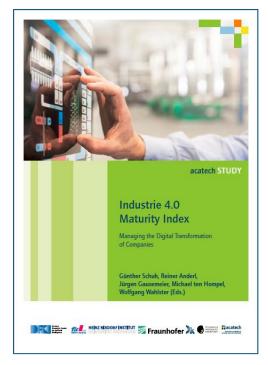
# HOW POLICYMAKERS CAN SPUR GREATER DIGITALIZATION


- Develop both formal, national digitalization strategies...
- And particular strategies for the deployment of AI, IoT, Industry 4.0, etc.









## MAKE MANUFACTURING DIGITALIZATION A **NATIONAL PRIORITY**



# WHAT COUNTRIES' INDUSTRY 4.0 POLICIES **ARE DOING**

Building "Maturity Indices" and "Model Use Cases" to facilitate manufacturers' digital transformation journeys. (Germany/USA)





# WHAT COUNTRIES' INDUSTRY 4.0 POLICIES ARE DOING

- 2. Launching "pilot fabs" that demonstrate smart-manufacturing techniques on active production lines. (Germany/Austria/Manufacturing USA)
- 3. Providing SMEs tax credits to facilitate equipment upgrades. (Austria/Italy)
- 4. Providing SMEs access to cloud-based, HPC-powered design, modeling, and simulation software. (Korea)
- 5. Developing smart manufacturing workforce training/credentialing programs and supporting enterprises' investments therein. (Germany)

# HOW POLICYMAKERS CAN SPUR GREATER DIGITALIZATION

- Deploy next-generation digital infrastructure (e.g., 5G).
- Make digital literacy a central objective of public education and adult workforce retraining systems.
  - E.g., UK: National Mandatory Computer Science Curriculum
  - E.g., Singapore: "Future Skills Initiative" Online Skills Assessment
- Don't introduce barriers to cross-border data flows/digital trade.
- Adopt an "innovation principle" not "precautionary principle."

# STRATEGIC OPPORTUNITY FOR THE PHILIPPINES



- Global manufacturers are in the midst of reimagining their global supply chain structures.
- Leverage current global trade dynamics to make the Philippines even more-attractive location for international tech-sector FDI.

# MARAMING SALAMAT!

Stephen Ezell | sezell@itif.org | 202.465.2984





