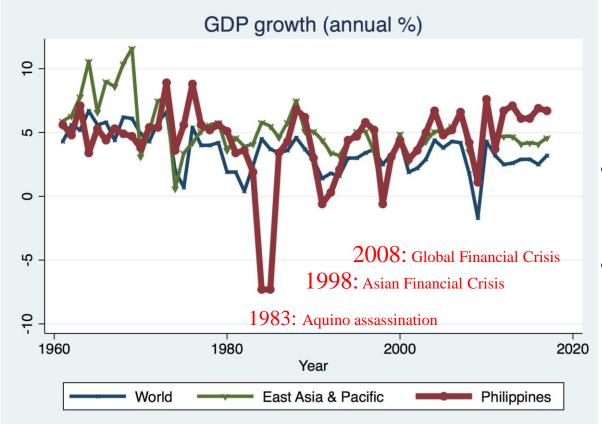
Seeking Out Opportunities and Gearing Up for Challenges in the Fourth Industrial Revolution (FIRe)

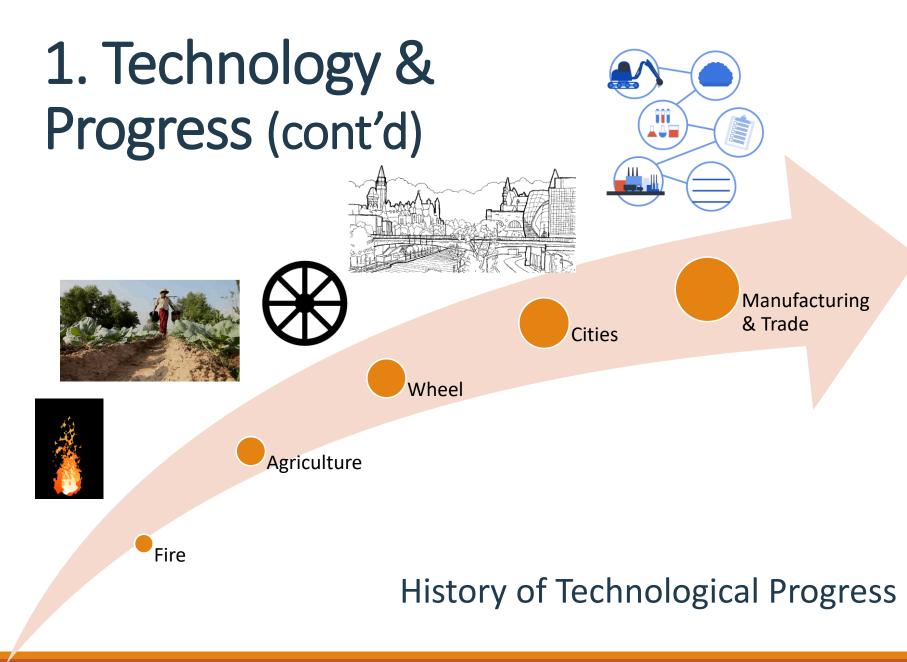
Jose Ramon G. Albert, Ph.D. Senior Research Fellow, PIDS Email: jalbert@mail.pids.gov.ph

CPBRD OCT 10, 2018

Agenda


1. Introduction

- Economic Growth and Technologically-Driven Progress
- □ What is the FIRe and its Frontier Technologies?
- Potential Impacts from FIRe Technologies
- 2. Innovation Ecosystem
 - Readiness for Future Production
 - Innovation Statistics
- 3. Government as "Gardener"
 - Preparing the Ground (Education)
 - Nurturing the Soil (R&D)
 - Watering the Ground (Support to Innovation)
 - Others : Social Protection, Tax Reform, Whole of Nation Paradigm and Action Agenda


1. Technology and Progress

Since the 1960s, the Philippines has had booms and busts

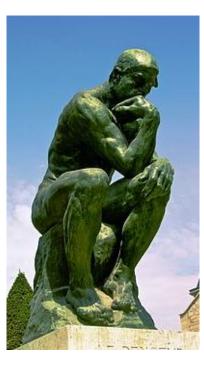
- Starting 2012, PH economic performance even better than average in East-Asia and the world
- Negative growth in East Asia only in 1998, and across the world in 2009
- Buoyant expectations for global progress in the wake of the emerging Fourth Industrial Revolution (FIRe)

1. Technology & Progress (cont'd)

What is the Fourth Industrial Revolution (FIRe)?

First came steam and water power; then electricity and assembly lines; then computerization. Throughout history, we have improved industry by migrating from established production methods to utilizing cutting-edge technologies

1st Revolution (1784) Steam, water, mechanical production equipment


- 2nd Revolution (1870) Division of labor, electricity, mass production, assembly line
- 3th Revolution (1969) Electronics, computers, internet, automated production

4th Revolution (???) Cyber-physical systems

1. Technology & Progress (cont'd) What is FIRe? (cont'd) "Characterized by a fusion of technologies that is blurring the lines between the physical, digital and biological spheres." – Schwab (2016)

1. Technology & Progress (cont'd) Frontier technologies

identified by select organizations

(ESCAP, 2018)

 No universally agreed definition of frontier technology

- It shows that the following technologies have been most commonly identified as frontier: 3D printing, the Internet of Things, AI, and robotics

OECD	World Bank	World Economic Forum	McKinsey Global Institute	Institute of Development Studies	MIT Technology Review 2018
Internet of Things	Fifth- generation (5G) mobile phones	Artificial intelligence	Mobile internet	3D printing	3D Metal Printing
Big data analytics	Artificial intelligence	Robotics	Automation of knowledge work	Collaborative economy tools	Artificial Embryos
Artificial intelligence	Robotics	Internet of Things	Internet of Things	Alternative internet delivery	Sensing City
Neuro technologies	Autonomous vehicles	Autonomous vehicles	Cloud technology	Internet of Things	Artificial intelligence for Everybody
Nano/micro satellites	Internet of Things	3D printing	Advanced robotics	Unmanned aerial vehicles/drones	Dueling Neural Networks
Nanomaterials	3D printing	Nanotechnology	Autonomous and near- autonomous vehicles	Airships	Babel-Fish Earbuds
3D printing (additive manufacturing)		Biotechnology	Next- generation genomics	Solar desalination	Zero-Carbon Natural Gas
Advanced energy storage technologies		Materials science	Energy storage	Atmospheric water condensers	Perfect Online Privacy
Synthetic biology		Energy storage	3D printing	Household-scale batteries	Genetic fortune-telling
Blockchain		Quantum computing	Advanced materials	Smog-reducing technologies	Materials' Quantum Leap
			Advanced oil and gas exploration		•
			Renewable energy		

Technology	Description
3D printing	Advances in additive manufacturing, using a range of materials and methods, innovations include 3D bioprinting of organic tissues
Internet of things (IoT)	the use of networked sensors to remotely connect, track and manage products, systems and grids
AI and robotics	Devt of machines that can substitute for humans, increasingly in tasks associated with thinking, multitasking and fine motor skills
Big data	High volume, velocity, and variety data from more use of interent (social media, search engines, digital commerce) and sensors
Virtual and augmented realities	Interfaces between humans and computers involving immersive environments, holographic readouts and digitally produced overlays for mixed-reality experiences
Blockchain	Distributed ledger technology based on cryptographic systems that manage, verify and publicly record transaction data
Neurotechnology	Innovations (smart drugs, neuroimaging and bioelectric interfaces) that allow for reading, communicating and influencing human brain activity

1. Technology & Progress (cont'd) Frontier technologies

Technology	Description
Advanced materials and nanomaterials	Creations of new materials and nanostructures for the development of beneficial material properties, such as thermoelectric efficiency, shape retention and new functionality
Energy capture, storage and transmission	Breakthroughs in battery and fuel cell efficiency; renewable energy through solar, wind and tidal technologies, energy distribution through smart grid systems, wireless energy transfer, and more.
New computing technologies	New architectures for computing hardware, such as quantum computing, biological computing or neural network processing, as well as innovative expansion of current computing technologies (such as cloud computing)
Biotechnologies	Innovations in genetic engineering, sequencing and therapeutics, as well as biological computational interfaces and synthetic biology
Geoengineering	Tech interventions in planetary systems, typically to mitigate effects of climate change by revoming carbon dioxide or managing solar radiation

1. Technology & Progress (cont'd) Frontier technologies

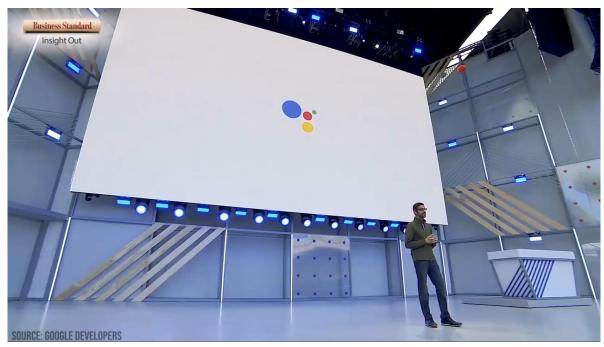
1. Technology & Progress (cont'd) Potential Impact of FIRe technologies

	Economic Implications	Socio- Cultural Implications	Political & Security Implications		
Robotics and AI	 Technological unemployment Income Inequality Disruption of traditional business models and global value chains 	 Rise of monopolies and oligopolies 	 Political polarization Instability Data and access security risks to automation Espionage, Terrorism, Autonomous warfare 		
ΙΟΤ	 Disruption of traditional business models 	 Erosion of personal privacy 	 Lack of trust in institutions Cybersecurity problems Data fraud 		
3D- printing	 Disruption of existing business processes 		Weapons proliferationCyber-sabotage		

1. Technology & Progress (cont'd) Some Technologies of the FIRe

Additive Manufacturing (or 3D-Printing) Example: Bio-printing organs, prosthetics and drugs

From Medical Futurist : <u>https://medicalfuturist.com/3d-printing-in-medicine-and-healthcare</u>


1. Technology & Progress (cont'd) Some Technologies of the FIRe Internet of Things (IoT) Devices connected with each other and sensors

From Shots of Awe : <u>https://www.youtube.com/watch?v=bNdLMVYEQKM</u>

1. Technology & Progress (cont'd) Some Technologies of the FIRe Artificial Intelligence (AI) Example: Google Assistant

From Business Standard : <u>https://www.youtube.com/watch?v=d40jgFZ5hXk</u>

1. Technology & Progress (cont'd) Some Technologies of the FIRe Artificial Intelligence (AI) Example: Detecting Diseases in Cassava

From TensorFlow : <u>https://www.youtube.com/watch?v=NlpS-DhayQA</u>

1. Technology & Progress (cont'd) Some Technologies of the FIRe Robotics (and Drones) Example: Drones used in Precision Spraying

From Cool Tech : <u>https://www.youtube.com/watch?v=59ldb4Hf4k4&t=138s</u>

Share of wage and salaried employment in key **manufacturing** subsectors at high risk of automation (per cent).

Manufacturing All manufacturing Cambod Food and beverages Garments All manufacturing Food and beverages ndonesia Garments Computers and electronics Motor vehicles All manufacturing Philippines Food and beverages Garments Computers and electronics All manufacturing Food and beverages Garments Computers and electronics Motor vehicles All manufacturing Viet Nam Food and beverages Garments Computers and electronics 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ILO (2016)

1. Technology & Progress (cont'd) Potential Impact of FIRe technologies

Acc to ILO, in the Philippines:

- nearly half (49%) of wage workers (males: 44%, females : 52%) face a high probability of getting affected by automation
- those working as fishery labourers (580,000), waiters (574,000), carpenters (525,000) and office cleaners (463,000) face a high potential of automation
- around 89 per cent of salaried workers in BPO sector fall into the high risk category of automation

The Fourth Industrial **Revolution will** trigger selective reshoring, nearshoring and other structural changes to global value chains (WEF 2018, ILO 2016)

Women make up 59% 22 of the Philippines' BPO workforce

The female share of TCF employment exceeds 70%

in Cambodia, Lao PDR, the Philippines, Thailand and Viet Nam

1. Technology & Progress (cont'd) Potential Impact of FIRe technologies

- Autor (2015) argues that extent of machine substitution for jobs tend to be overstated by ignoring strong complementarities which increase productivity, raise earnings and augment demand for labor
- Autor adds that even if automation does not reduce quantity of jobs, it may affect the qualities of jobs that are available
- Policy implication: human capital investments must be at the heart of any longterm strategy on preparation for impact of technology on jobs

1. Technology & Progress (cont'd) General Optimism about FIRe on jobs

- 1. New tech often automate only some tasks, and not entire job
 - The case of the bank teller
- 2. Technological feasibility is not adoption
 - The case of the bank teller again
 - Industry 1.0. 2.0, 3.0 persists
 - Pessimistic view (e.g., Stiglitz, 2017) : markets cannot adjust fast enough without massive displacements in jobs

1. Technology & Progress (cont'd) General Optimism about FIRe on jobs

- 3. Domestic demand more than compensated for job losses from automation
 - production "reshoring" back to advanced economies did not occur
 - it did not occur \neq it will not happen

amazon

airbnb

4. Technology creating new jobs, new business models, and new industries

Timeframe to impact industries, business models

Impact felt already

- » Rising geopolitical volatility
- » Mobile internet and cloud technology
- » Advances in computing power and Big Data
- » Crowdsourcing, the sharing economy and peer-to-peer platforms
- » Rise of the middle class in emerging markets
- » Young demographics in emerging markets
- » Rapid urbanization
- » Changing work environments and flexible working arrangements
- » Climate change, natural resource constraints and the transition to a greener economy

WEF (2016)

2015-2017

- » New energy supplies and technologies
- » The Internet of Things
- » Advanced manufacturing and 3D printing
- » Longevity and ageing societies
- » New consumer concerns about ethical and privacy issues
- » Women's rising aspirations and economic power

2018-2020

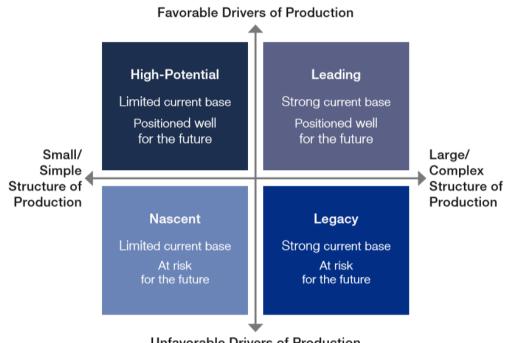
- » Advanced robotics and autonomous transport
- » Artificial intelligence and machine learning
- » Advanced materials, biotechnology and genomics

Crucial Emerging Technologies for the SDGs until 2030 (examples) (1/2)

Technology cluster	Emerging technologies	Opportunities	Potential Risks/Threats
Bio-tech	Biotechnology, genomics, and proteomics; gene-editing technologies and custom-designed DNA sequence; genetically modified organisms; stem cells and human engineering; bio- catalysts; synthetic biology; sustainable agriculture	materials, environment,	Military use; irreversible changes to health and environment
Digital-tech	engagement and behavioral change; pre- paid system of electricity use and	employment, manufacturing, agriculture, health, cities, finance, absolute "decoupling", governance, participation, education, citizen science, environmental monitoring, resource efficiency, global data	Unequal benefits, job losses, skills gaps, social impacts, poor people priced out; global value chain disruption; concerns about privacy, freedom, and development; data fraud, theft, cyber attacks

Crucial Emerging Technologies for the SDGs until 2030 (examples) (2/2)

Technology cluster	Emerging technologies	Opportunities	Potential Risks/Threats
Nano-tech	Nano-imprint lithography; nanotechnology applications for decentralized water and wastewater treatment, desalination, and solar energy (nanomaterial solar cells); promising organic and inorganic nanomaterials, e.g., graphene, carbon nanotubes, carbon nano-dots and conducting polymers graphene, perovskites, Iron, cobalt, and nickel nanoparticles, and many others	Energy, water, chemical, electronics, medical and pharmaceutical industries; high efficiencies; resources saving; CO2 mitigation.	Human health (toxicity), environmental impact (nanowaste)
Neuro-tech	Digital automation, including autonomous vehicles (driverless cars and drones), IBM Watson, e-discovery platforms for legal practice, personalization algorithms, artificial intelligence, speech recognition, robotics; smart technologies; cognitive computing; computational models of the human brain; meso-science powered virtual reality	Health, safety, security (e.g., electricity theft), higher efficiency, resource saving, new types of jobs, manufacturing, education	Unequal benefits, de-skilling, job losses and polarization, widening technology gaps, military use, conflicts.



2. Innovation Ecosystem FIRe and the SDGs

SDG	APPLICATIONS
Agriculture (SDGs 1, 2, 5, 8, 10 and 12)	Recent advances in image recognition allowed researchers to scan more than 50,000 photos of plants to help identify crop diseases at sites using smartphones with a success rate of over 99 per cent
Healthcare (Goal 3)	Al applications have been developed that substitute and complement highly educated and expensive expertise by analyzing medical images. 3D printing produce patient specific prosthetics, orthotic braces and customized medical implants.
Environment and climate (Goal 13)	AI and deep learning can help climate researchers and innovators test out their theories and solutions as to how to reduce air pollution

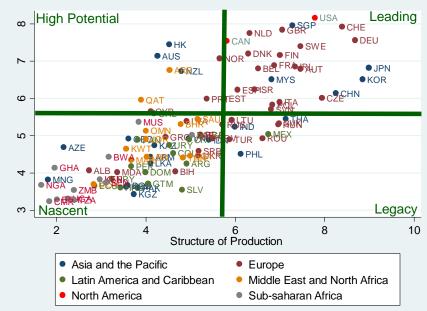
Country Archetypes

Unfavorable Drivers of Production

Note: Average performance of the top 75 countries (weighted average driver score, weighted average structure score) is at the intersection of the four quadrants to create the archetype borders.

WEF (2017)

2.1. WEF Assessment on Preparations


The seven ASEAN countries included in the assessment are spread across three different archetypes: Leading— Malaysia and Singapore; Legacy— Philippines and Thailand; and Nascent— Cambodia, Indonesia and Viet Nam.

Legacy country - has a strong production base today, but it is at risk for the future due to weaker performance across drivers of production, which include technology and innovation, human capital, global trade and investment, institutional framework, sustainable resources, and the demand environment.

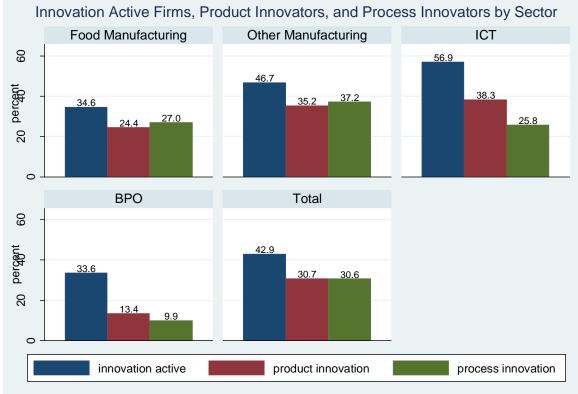
2.1. WEF Assessment on Preparations (cont'd)

 Investments in R&D, hard and soft infrastructure, as well as capacity dev't of human resources and institutions are complementary factors for <u>Inclusive Development</u> and for <u>Readiness for Future of</u> <u>Production</u>

Drivers and Structure of Production

WEF (2018)

2.2. Statistics on Innovation in PH


Innovation is widely regarded as a major driver of economic output, productivity and competitiveness ... but not all firms innovate

		ALL COUNTRI ES		
Indicator	2009 SIA	2015 PIDS	2015 WO	
Percent of firms that introduced a new product/service	37.6	30.7	32.9	36.6
Percent of firms that introduced a process innovation	43.9	30.6	40.9	34.2
Percent of firms that spend on R&D	40.3	26.7	21.9	16.9

About two-fifths (42.9%) of PH firms are innovation active. A third (30.7%) are product innovators. A third (30.6%) are also process innovators.

Innovation varies across sector (and even by size of firm).

Source: 2015 Survey of Innovation Activities, Philippine Institute for Development Studies

Source: 2015 Survey on Innovation Activities, PIDS

Determinants of Innovation: Logistic Model Results

- The practice of knowledge management is a determinant of product innovation, process innovation and being an innovator.
- Human resources matter: firms with 20 percent or fewer employees having post-baccalaureate degrees are less likely to be innovators than those with at least a fifth of employees having postbaccalaureate degrees.
- Gross sales matters: higher gross sales (which correlates with establishment size) is a positive determinant of innovation..
- Location generally does not matter much, except for product innovation

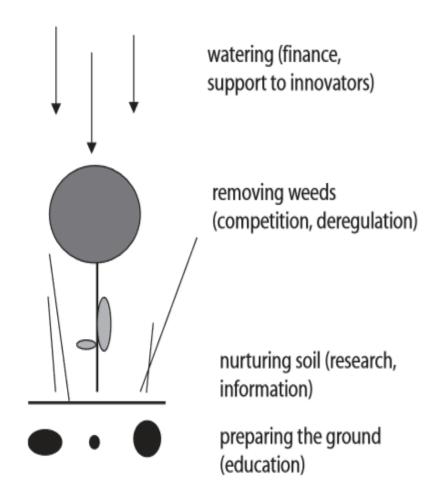
Sources of Innovation in PH firms (acc to 2015 SIA)

Information source rated with "high" importance					Large	All Firms
1.	1. Internal a. Within your establishment or enterprise			9.1	32.3	10.2
2.	2. Market sourcea.Suppliers of equipment, materials, components, or software		7.5	16.1	7.9	
		b.	Clients or customer	14.1	19.8	14.3
		C.	Competitors or other enterprise in your sector	8.7	9.0	8.7
	d. Consultants, commercial laboratories, or private R&D institutes		3.5	6.7	3.6	
3. Institutional		a.	Universities or other higher education institutions	1.9	3.7	1.9
	source	b.	Government or public research institutes	1.1	2.6	1.2
4.	4. Other		Conferences, trade fairs, exhibitions	5.9	10.8	6.2
	source		Scientific journals and trade/technical publications	2.0	7.1	2.2
		с.	Professional and industry associations	3.5	8.7	3.8

Clients and internal sources are regarded as highly important as sources of information on innovation. MSMEs regard customers most at 14.1% while a third of large firms relies heavily on information within the enterprise.

Barriers to Innovation in PH (acc to 2015 SIA)

- Cost factors most common issue identified by firms as significant hindrance to innovation.
 - One-fourth of MSMEs , and innovative large firms considered direct costs of innovation being too high
 - About one in every five MSMEs, and innovative large firms cited lack of funds
- One in five firms, especially among MSMEs, also reported knowledge factors or market factors as barriers to innovation.
 - More than 10% cited lack of qualified personnel as well as difficulty in finding cooperation partners for innovation and uncertain demand for innovative goods/services
 - 16.6% of MSMEs reported market being dominated by established enterprises as a barrier to innovation



2.2. Statistics on Innovation in PH

Global Innovation Index (GII), Global Competitiveness Index (GCI), and Existing Competition Policy

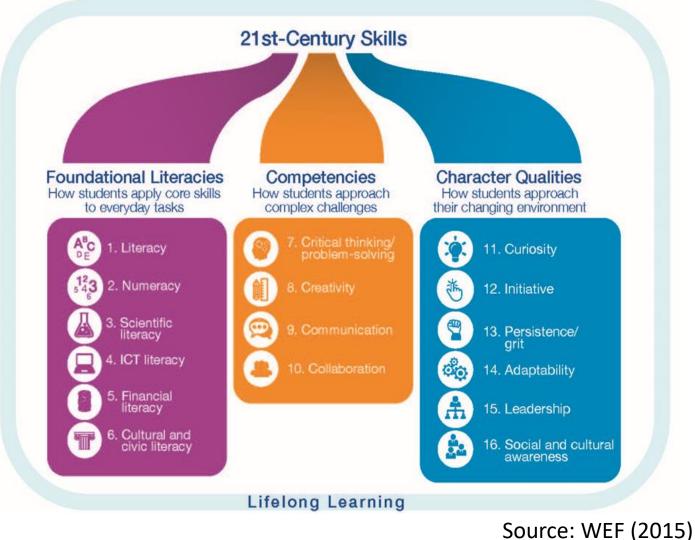
ASEAN Member State	2017 GII Ranking	2016 GII Ranking	2017 GCI Ranking	2016 GCI Ranking	Existing Competition Policy
Singapore	7 th	6 th	3 rd	2 nd	Competition Act 2004
Malaysia	37 th	35 th	23 rd	25 th	Competition Act 2010
Thailand	51 st	52 nd	32 nd	34 th	Trade Competition Act 1999
Viet Nam	47 th	59 th	55 th	60 th	Competition Law 2004
Philippines	73 rd	74 th	56 th	57 th	Phil Competition Act 2015
Indonesia	87 th	88 th	36 th	41 st	Law Number 5 Year 1999 on the Prohibition of Monopolistic Practices and Unfair Business Competition
Cambodia	101 st	95 th	94 th	89 th	Draft Competition Law 2016

3. Government as Gardener

Source: World Bank (2010)

3.1. Preparing the ground (Education)

 Skills and competencies developed in school should be like LEGO blocks which can used to create different figures using the same building blocks


 Need for lifelong learning, continuous training and retraining; the only way to keep up is to continuously learn, unlearn, and re-learn

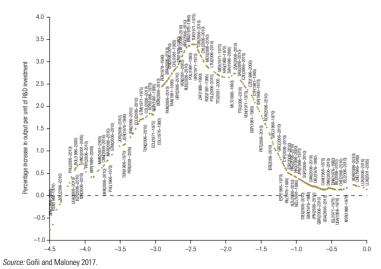
 A key skill that needs to be developed among learners is "learning how to learn.

 Pedagogy should go beyond transmitting knowledge into encouraging reconstruction of knowledge

3.1. Preparing the ground (Education)

3.2. Nurturing soil (Research, Information)

The bulk (60%) of R&D spending across sectors is actually supported by government (Albert *et al.*, 2015). While the Philippines has had a slight increase in R&D expenditure to GDP in recent years, this spending is still at less than a fifth of one percent of GDP, which is below the one percent benchmark recommended by the United Nations Educational, Scientific, and Cultural Organization (UNESCO). The country's share of spending in GDP also falls below spending of several ASEAN member states, especially Singapore (2.4 %) and Malaysia (1.3 %), and even including Thailand (0.5 %) and Viet Nam (0.2 %).


3.3. Watering Ground (Finance, Support to Innovation)

- DTI, DOST and CHED working in tandem on Inclusive Innovation Industry Strategy ("i3S")
- DOST programs to boost innovation support
 - Science for Change Program (S4CP)
 - Balik Scientist 2.0
 - SETUP
- DICT
 - Addressing Issues on coverage, price and quality of internet
 - formulating successor to Philippines Digital Strategy 2011-2015, developed National Broadband Plan e-Government Master Plan 2016-2020 (EGMP 2.0),
 - established GovCloud
 - Congress : working to establish a National Innovation Council
 - Do we need a new institution or a new paradigm/model?

3.3. Watering (Finance, Support to Innovation)

CAUTION: Returns to R&D Trace an Inverted U-Shape across the Dev't Process

Note: Graph uses quinquennials of cross-country data from 1960 to 2010 to estimate the rates of return to research and development (R&D) across the development process: 0 is the frontier, and moving left represents progressively less developed countries.

- ROI on Innovation/R&D Spending rate of return begins to fall and may even be negative for quite poor countries
- Explanation: when countries are far from the technological frontier, the potential gains from "catch-up" increases but when stock of complementarity factors (human capital, firm and management capabilities, financial markets) are missing, returns will be low
- Issues about absorptive capacity
 SOURCE: <u>Innovation Paradox</u>

3.4. Removing Weeds (Competition, Deregulation)

- In the most recent Doing Business 2018 (2018) report, the Philippines ranking slipped from 99th in 2017 to 113th behind Vietnam and Indonesia at 68th and 72nd, respectively. Among the indicators, the Philippines was ranked lowest in "starting a business"
- According to the OECD (2016), foreign direct investment (FDI) restrictions in the Philippines are high by both regional and global standards. Based on OECD FDI Regulatory Restrictiveness Index, the Philippines is the most restrictive economy among the 62 OECD and non-OECD countries included in the database. Compared to other countries (e.g. China, Vietnam, India, Indonesia, and Malaysia) the regulatory environment for FDI in the Philippines has not changed much in the last 20 years.

3.5. Other challenges and issues

- Responsive and adaptive regulation
 - Regulatory sandbox
 - "Whole of Government"
- Labor market and social protection
 - Flexible and forward-looking labor market
 - Strengthening social protection systems: progressive universalism and portable social protection systems
 - universal basic income (???)
- Taxation reform/upgrade (???) : : improve collection of real property tax, provision of excise taxes on sugar, tobacco and alcohol, subsidy reforms, reducing tax avoidance.
- >Whole of Nation Paradigm and Action Agenda

Service through policy research

[Thank you] PIDS <u>Scoping paper</u> on FIRe

WEBSITE: www.pids.gov.ph

FACEBOOK: facebook.com/PIDS.PH

TWITTER: twitter.com/PIDS_PH

EMAIL jalbert@mail.pids.gov.ph; rserafica@mail.pids.gov.ph;