Projected Disease Transmission, Health System Requirements, and Macro-economic Impacts of the Coronavirus Disease 2019 (COVID-19) in the Philippines

M.R.M. Abrigo, J. Uy, N.J. Haw, V.G.T. Ulep, and K. Francisco-Abrigo May 14, 2020

www.pids.gov.ph

Objectives and Outline

- Projected magnitude of COVID-19 outbreak
- Projected health system resource requirements
- Projected economy-wide impacts
- Recommendations

Projected Magnitude of the COVID-19 Outbreak in the Philippines

OBJECTIVE 1

Data Sources for Disease Transmission Model

- DOH Epidemiology Bureau (EB)
 confirmed cases and deaths
 - time-to-event data
 - symptom onset → seeking care/testing
 - care/testing
 test confirmation
- Literature review for parameters where DOH-EB data is too biased/incomplete
 e.g. Case severity, incubation period

ICC = Independent component cities

Data on Confirmed COVID-19 Cases

DOH-EB data as of April 7, 2020

	Characteristic	All cases (<i>n</i> = 3,781)	All deaths (<i>n</i> =177)
EB data	Median (IQR) age, years	53 (37 - 65)	65 (58 - 74)
April 7, 2020	Age group, n (%)		
	< 15 years old	39 (1.03%)	1 (0.56%)
	15 - 44 years old	1,284 (34.0%)	11 (6.2%)
	45 - 64 years old	1,476 (39.0%)	68 (38.4%)
	≥ 65 years old	981 (25.9%)	97 (54.8%)
	Missing	1 (0.03%)	0 (0%)
	Sex, n (%)		
	Males	2195 (58.0%)	126 (69.5%)
	Females	1,585 (41.9%)	54 (30.5%)
	Missing	1 (0.03%)	0 (0%)
	Residence, n (%)		
	National Capital Region (NCR)	2,114 (55.9%)	109 (61.6%)
	Outside of NCR	798 (21.1%)	60 (33.9%)
	Missing	869 (23.0%)	8 (4.5%)
	Known travel history within 14 days before		
	reported onset of symptoms, n (%)		
"Imported" cases →	Foreign country with local transmission	140 (3.7%)	10 (5.7%)
	No foreign travel	1,186 (31.4%)	104 (58.8%)
	Unknown travel history	2,455 (64.9%)	63 (35.6%)

Overview of "SEIR" Compartmental Models

Model projection: for each time (t), how many people are in each compartment/health state?

*N = S + E + I + R

Transition among "SEIR" Compartments

Probability of transmission

- What % of susceptible people who contact infectious people will become infected?
- Incorporates info on the basic reproduction number (R0) where $\beta = R0 / (duration of infectiousness)$

Model projection: for each time (t), how many people are in each compartment/health state?

Implicit Assumption of "SEIR" Model

Assortative Mixing

$$\beta \frac{I(t)}{N} * S(t)$$

Everyone in the population will make contact with each other with equal probability

Same frequency, intensity, duration

Rate of Transition between Compartments

- Transition between compartments occurs at a constant rate
- That means, if we assume that it takes 5 days for infected people to show symptoms, then we apply this assumption to everyone in the population and for all days in the simulation.

COVID-19 SEIR compartmental model

All values are calculated at the provincial level, then aggregated up.

COVID-19 SEIR model parameters

All values are calculated at the **provincial level**, then aggregated up.

Age-standardized case fatality from DOH-EB data is 5%

Result: Laboratory result

COVID-19 scenarios

Five scenario sets

Letter suffixes
 refer to length of
 ECQ

 Number of scenarios refer to additional interventions

		LUZON-WIDE ECQ		Health System contact	Early Isolation at		
SCENARIOS		Duration	Compliance	Individual Isolation	Symptom Onset		
S0	No intervention		None	n/a	None	n/a	
		а	Mar 17 - Ap 12		<i>Time to Test/Care from</i> <i>Symptoms</i> = ~6 days*	n/a	
S1	ECQ	b	+2 weeks	95%	% Following Isolation		
		с	+4 weeks		Post-ECQ - 50%		
		а	Mar 17 - Ap 12				
S2	S2 ECQ + better testing	b	+2 weeks	95%		n/a	
		с	+4 weeks		Time to Test/Care from		
	ECO + better	а	Mar 17 - Ap 12		Symptom Onset ECQ to April 12= ~6 days		
S 3	testing + isolate at	b	+2 weeks	95%	Extended ECQ = 4 days		
	symptom onset	с	+4 weeks			50%	
S 4	Extended ECO	b	+2 weeks		During ECQ - 80%		
34	with partial lifting	с	+4 weeks	50% during	Post-ECQ - 50%		
+ isolate at	+ isolate at	b	+2 weeks	extension		70%	
30	S5 symptom onset	с	+4 weeks			1070	

* Author's calculations from DOH-EB data as of April 7, 2020.

Results

Scenario 0: No intervention scenario peaks on August 2020 with 18.9 million cases

19M

18M

17M

16M

15M

14M

13M

12M

1M

0M

9M

7M

6M

5M

4M

3M

2M

1M

OM

S

case

Total active

COVID-19 Intervention Scenarios No intervention Scenario 1a: Baseline ECQ (ends April 12) Scenario 1b: ECQ extended by 2 weeks (ends April 26) Scenario 1c: ECQ extended by 4 weeks (ends May 10) Scenario 2a: ECQ + better testing Scenario 2b: ECQ extended by 2 weeks + better testing Scenario 2c: ECQ extended by 4 weeks + better testing Scenario 3a: ECQ + better testing + rapid isolation of cases Scenario 3b: ECQ extended by 2 weeks + better testing + rapid isolation Scenario 3c: ECQ extended by 4 weeks + better testing + rapid isolation Scenario 4b: Post-ECQ 2 week partial lifting + better testing + rapid isolation Scenario 4c: Post-ECQ 4 week partial lifting + better testing + rapid isolation Scenario 5b: Post-ECQ 2 week partial lifting + better testing + ideal isolation Scenario 5c: Post-ECQ 4 week partial lifting + better testing + ideal isolation Scenario 1: Baseline ECQ scenario peaks on October 2020 with 8.5 million cases. Extending ECQ in increments of two weeks simply pushes peak by that much. Scenario 2: A scenario with ECQ coupled with better testing turnaround times results to a peak on October 2020 with 6.6 million symptomatic cases. Extending ECQ in increments of two weeks simply pushes peak by that much. Scenario 3: A scenario with ECQ coupled with better testing turnaround times and rapid isolation of cases results to a peak on November 2020 with 5.2 million symptomatic cases. Extending ECQ in increments of two weeks simply pushes peak by that much. Scenario 4: A scenario with partial lifting of ECQ for two weeks, coupled with better testing turnaround times and rapid isolation of cases results to similar results as Scenario 3, implying that partial lifting may not make any significant impact in slowing down the outbreak. Scenario 5: A scenario with partial lifting of ECQ for two weeks. coupled with better testing turnaround times and ideal (at least 70%) isolation of cases results to a peak of 904,000 on June 2021.

1 Jan 2020 1 Apr 2020 1 Jul 2020 1 Oct 2020 1 Jan 2021 1 Apr 2021 1 Jul 2021 1 Oct 2021 1 Jan 2022

Projection for May 11 (Monday)

	Current Active Infections (including asymptomatic and undetected)	Deaths (Cumulative) **
Scenario S1C	11,864 (11,111 – 12,617)	850 (808 – 886)
Scenario S3C	11,896 (11,184 – 12,677)	856 (823 – 886)
Reported (DOH)	8,361 (11,086 total cases less 1,999 recovered and 726 dead)	726

** Lag in reporting of deaths not taken into account in calibration

Key Message #1

- •Aggressive efforts in the post-ECQ period to isolate at least 70% of infectious cases through better contact tracing, social distancing, individual or household isolation, and reduced delays in time to seek care for symptomatic cases are necessary to suppress the outbreak.
- Extending the ECQ without other mitigation measures merely delays the progression of the outbreak and still results in a large number of cases.

Projected Health System Resource Requirements

OBJECTIVE 2

Assumptions

 Linked SEIR projections with resource requirement per case that require *medical intervention* at health care facilities.

- Assumed chronology of health care contact:
 - •Outpatient care (primarily ER) to be triaged.
 - In-patient care for severe and critical cases.
 - Discharged for mild/moderate cases.

Assumptions

able 5. Human resources and PPE needs per setting for a 24-nour period							
Setting	Ratio of staff to patients (Liwanag & Ayaay, 2020)	PPE sets per Patient Type per day					
Outpatient Triage	At maximum, 120 patients can be seen in the emergency room: • Physicians - 4:120 (2 Pasidente, 1 Cansultant, 1 Follow)	0.217 per symptomatic case					
Team	 Nurses - 3:120 Auxiliary staff - 4:120 Cleaner - 1:120 Guard - 1:120 	(Calculated from Ratio of staff to patients in outpatient triage team)					
	Destas 4.0	15 per severe case per day					
Inpatient wards	 Doctor - 1:6 Nurse - 1:3 	(DOH estimates in consultation with UP-PGH)					
	Doctor - 1:1						
Intensive Care Unit	Nurse - 1:1 Intensivist 1:5	30 per severe case per day					
	 Pulmonologist - 1:5 Infectious disease specialist - 1:5 Respiratory therapist - 1:5 	(DOH estimates in consultation with UP-PGH)					

Beds, Ventilators, PPE sets, Human resources

Scenario	Peak Month	Hospital Bed	ICU beds	Ventilators	PPE sets	Doctors	Nurses	Specialists
0	August 2020	3.39 mil	1.03 mil	557,000	82.0 mil	1.64 mil	2.19 mil	206,113
1a	September 2020	1.51 mil	456,000	246,000	36.5 mil	727,000	975,000	91,300
1b	September 2020	1.52 mil	458,000	247,000	36.7 mil	730,000	979,000	91,600
1c	September 2020	1.51 mil	454,000	245,000	36.4 mil	725,000	971,000	91,800
2a	October 2020	1.33 mil	410,000	222,000	32.3 mil	646,000	864,000	82,000
2b	October 2020	1.32 mil	408,000	220,000	32.1 mil	642,000	859,000	82,500
2c	October 2020	1.32 mil	408,000	220,000	32.2 mil	643,000	860,000	81,600
3a	November 2020	1.05 mil	322,000	174,000	25.5 mil	508,000	680,000	64,500
3b	November 2020	1.05 mil	322,000	174,000	25.5 mil	508,000	680,000	64,400
3c	November 2020	1.04 mil	321,000	174,000	25.4 mil	507,000	678,000	64,300
4b	November 2020	1.04 mil	321,000	174,000	25.4 mil	507,000	678,000	64,300
4c	November 2020	1.04 mil	323,000	174,000	25.5 mil	509,000	681,000	64,600
5b	June 2021	182,000	55,500	30,000	4.41 mil	88,000	118,000	11,100
5c	May 2021	182,000	55,600	30,000	4.41 mil	88,000	118,000	11,100

Source: Authors' calculations; mil = million; rounded off to three significant figures

PhilHealth Reimbursement

Table 8. Projected total PhilHealth reimbursements for COVID-19 cases

Scenario	Reimbursements in PHP (Billions)
0	9,520
1a	6,430
1b	6,340
1c	6,250
2a	4,970
2b	4,920
2c	4,860
3a	3,800
3b	3,760
Зc	3,740
4b	3,760
4c	3,740
5b	206
5c	268
Source: Authors' cal	culation

PhilHealth Case rates for hospitalized cases

- Severe P 333,519
- Critical P 786,384

For reference: In 2019, PhilHealth only had a corporate budget of PHP 175 billion (PhilHealth, 2019).

****** Assume that the case rates will not be revised (e.g. to a lower amount) for April 14, 2020 onwards and that all COVID-19 cases will avail of PhilHealth benefits.

PÍÚS

Key Message #2

- For all scenarios that do not successfully isolate at least 70% of infectious individuals, demand for health care resources generated by COVID-19 at the peak of the outbreak will far exceed available supply in the health sector.
- Only S5 scenarios present a manageable timeline to scale up health system capacity within a year to a reasonable level that the health system can sustain and benefit from even after the COVID-19 outbreak.
 - For example, should the gaps in hospital beds be addressed, the Philippine health system would have with 1.7 L2 and L3 beds per 1,000 population compared to the current supply of 0.57 L2 and L3 beds per 1,000.

Projected Economy-Wide Impacts

OBJECTIVE 3

Where are the Filipinos?

Retail & recreation

compared to baseline

Mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters.

Grocery & pharmacy

compared to baseline

Mobility trends for places like grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and pharmacies.

https://www.gstatic.com/covid19/mobility/2 020-04-17 PH_Mobility_Report_en.pdf

Where are the Filipinos?

Workplaces

compared to baseline

Mobility trends for places of work.

Residential

compared to baseline

Mobility trends for places of residence.

https://www.gstatic.com/covid19/mobility/2 020-04-17 PH Mobility Report en.pdf

COVID-19 and labor supply

Potential limits of interventions

- Three in every five Filipinos have limited capacity to subsist without additional support if community quarantines are extended beyond one month.
- Alternative (non-wage) sources of income are not equally available among different households.

Remittances from international migrant workers' jobs may also be at risk with the spread of COVID-19 in host countries.

Potential limits of interventions

 Telecommuting arrangements may be possible for some but not all occupations/classes.

 Limiting travel, while important, may have strong negative impacts on the ability of consumers to access and producers to delivery essential resources.

Macroeconomic projection

Based on Leontief input-output model.

Estimated gross value added response to change in final demand (consumption, exports).

Change in exports assumed to be half of 2009 global financial crisis levels in worse case.

Change in household demand linked with epidemic curve projections

Modelling strategy

Projection scenarios

Table 11. Macroeconomic projection scenarios

Scenarios	Consumption/Employment ¹	Exports
Worse case Scenario S1B; The pandemic is not contained around the world, and the global economy slows down into a recession.	5.3% reduction in household consumption as a result of 19.7% drop in annual average labor supply, and 20% net reduction in average incomes among displaced workers.	Philippine exports of goods decline by 80 percent of 2009 Global Financial Crisis rates for agriculture, forestry and fishing (5%), mining and quarrying (20%), and manufacturing (24%). Consumption from transportation, storage and communication, and other services export decline by 20%.
Moderate case Scenario S3B; The pandemic is effectively contained around the world by end of 2020Q3.	 3.7% reduction in household consumption as a result of 14.4% drop in annual average labor supply, and 20% net reduction in average incomes among displaced workers. 	50% of worse-case scenario.

Projection scenarios

Best case	0.7% reduction in household	10% of worse-case scenario.
Scenario S5B; The	consumption as a result of 7.4%	
pandemic is effectively	drop in annual average labor	
contained around the world	supply, and 20% net reduction in	
by end of 2020Q2.	average incomes among	
-	displaced workers.	

Note: Authors' assumptions.

1 Commodity-specific income elasticities of demand are calculated based on aggregate data from PSA. See Appendix 3 for the calculation of the change in employment by scenario.

Important caveats

Estimates are only indicative.

Excluded expected increase in health care demand in response to COVID-19.

 Intentionally based on conservative assumptions to provide a lower limit to the potential economic losses.

Projected GVA decline

Economy-wide losses as much as PHP2.5 trillion

Worse-hit by value are manufacturing, trade, and other services

Also mining and quarrying if by share

	Level (PHP Billions)			Share of	f 2019 Gross Added (%)	Value
	Best	Moderate	Worse	Best	Moderate	Worse
Agriculture, forestry and					-	-
fishing	9.4	50.5	110.3	0.5	2.9	6.4
Mining and quarrying	1.7	8.6	26.9	1.1	5.3	16.7
Manufacturing	82.1	421.8	855.2	2.3	11.7	23.8
Construction	1.7	9.0	19.3	0.1	0.5	1.2
Electricity, gas and water	5.7	30.5	44.3	0.9	5.0	7.3
Transportation, storage						
and communication	11.7	61.6	124.3	1.1	5.6	11.3
Wholesale and retail trade	93.2	497.7	724.8	2.6	13.9	20.3
Financial intermediation	18.5	98.9	141.3	1.1	6.0	8.6
Real estate, renting and						
business activities	10.7	56.8	79.7	0.4	2.4	3.3
Other services	41.5	221.0	356.9	1.5	7.8	12.6
All sectors	276.3	1,456.3	2,482.9	1.4	7.6	12.9

Table 12. Projected decline in sectoral gross value added

Source: Authors' calculations.

Impact of ECQ extension

Table 13. Projected macro-economic impact of NMI

	Mitigation measures			ECQ Extensio	ECQ Extension			
	ECQ	Better testing	Isolation at onset	No extension	+2 weeks	+ 4 weeks		
A. Level (PhP Billion)							
S1	Yes; 95%	No	No	1,417.9	1,475.7	1,573.3		
S2	Yes; 95%	Yes	No	1,230.4	1,323.7	1,415.7		
S3	Yes; 95%	Yes	Yes; 50%	1,043.6	1,141.5	1,241.2		
S4	Yes; 50%	Yes	Yes; 50%		980.7	1,029.8		
S5	Yes; 50%	Yes	Yes; 70%		213.4	283.7		
B. Share	of 2019 GVA (%)						
S1	Yes; 95%	No	No	7.4	7.7	8.2		
S2	Yes; 95%	Yes	No	6.4	6.9	7.4		
S3	Yes; 95%	Yes	Yes; 50%	5.4	5.9	6.4		
S4	Yes; 50%	Yes	Yes; 50%		5.1	5.3		
S5	Yes; 50%	Yes	Yes; 70%		1.1	1.5		

*No intervention: PhP1,980B; 10.2% of 2019 GVA

Key Message #3

- The Philippine economy may lose between 276.3 billion (best case) and PHP 2.5 trillion (worse case) due to COVID-19.
 - Manufacturing (PHP 82.1- to 855.2-billion)
 - •Wholesale and retail trade (PHP 93.2- to 724.8-billion)
 - Other services (PHP 41.5- to 356.9-billion)

 Given the same set of mitigation measures, extending the ECQ by one month may potentially cost the Philippine economy at least PHP150 billion due to possible decline in household consumption as workers remain unemployed for longer periods.

Recommendations

Recommendations

- •Maximize the implementation of the ECQ (effective, but temporary and devastating to the economy and health).
- Plan a gradual and calibrated transition: ECQ to risk-based strategy. Identify when is the best time to transition; set the criteria.

- There is a clear evidence that transmission is controlled.
- There is sufficient health system capacity.
- There is ability to protect vulnerable population, specifically health workers.
- Workplaces are prepared.
- Local governments are prepared.
- People are prepared of the new normal.

There is a clear evidence that transmission is controlled.

- Significant and consistent decline in doubling time.
- Significant and consistent decline in RO.
- Decline in positive test.

There is a clear evidence that transmission is controlled.

- Significant and consistent decline in doubling time.
- Significant and consistent decline in RO.
- Decline in positive test.

There is sufficient health system capacity.

Capacity to do massive testing

Capacity to trace

Capacity to isolate

Capacity to treat

Capacity to track and monitor

Capacity to do massive testing

There is sufficient health system capacity (TESTING).

- The government has the capacity to conduct 10,000 to 15,000 test per day.
- The government has a clear strategy to democratize testing by incentivizing local governments and private sector to expand testing infra.

• Strategy: Use PhilHealth strategic purchasing power.

Capacity to trace

There is sufficient health system capacity (TRACING).

 The local governments with the support of the national government have already hired and trained an <u>army of</u> <u>contact tracers</u> to do the detective work.

Capacity to isolate

There is sufficient health system capacity (ISOLATING).

- <u>Strategy of WHO</u>: Test and isolate.
- Ideal strategy: Isolate and test.
- Shift in policy from home to quarantine facility.
- The local governments should have established quarantine facilities.
- Strategy: allow the private sector to build isolation facilities. PhilHealth include isolation as part of their benefit package.

Capacity to treat

There is sufficient health system capacity (TREATING).

- The government has established COVID referral hospitals all over the country to promote efficiency.
- The government has augmented supply-side requirements to accommodate possible second wave. The government has increased the number of isolation rooms, ventilators, and other critical equipment.
- The government has set standard treatment protocol to reduce treatment variation.

Capacity to monitor

There is sufficient health system capacity (MONITORING).

- The government have established a robust IT system to monitor the trajectory of new cases real-time.
- A potential surge in cases might occur as early as two weeks after relaxing the ECQ, and the system should be detect the potential surge. This allows decision makers to re-calibrate directions/actions if necessary.

There is ability to protect vulnerable population, specifically health workers.

- The country has enough supply/buffer of personal protective equipment (PPE).
- The government has strategic plan to avoid depletion of PPE (e.g., local production, importation, innovation)
- The government has increased the number of health workers to ensure optimal rotation to avoid burn out, which is one of the major drivers of higher infection rate in HCW.
- Hospitals have robust infection control.

•Workplaces are prepared.

- Ability to implement physical distancing and other public health interventions (e.g. handwashing, temperature gathering).
- Ability to implement nudges to ensure employees abide with public health interventions.
- Workplaces have established outbreak strategic/infection control strategic plan (e.g. random testing protocols).

Demand vs. supply modalities?

Philippine Institute for Development Studies Surian sa mga Pag-aaral Pangkaunlaran ng Pilipinas

Service through policy research

EMAIL: <u>mabrigo@mail.pids.gov.ph</u>