DISCUSSION PAPER SERIES NO. 2018-13

Effect of Supply Chain Integration on the Business Performance and Competitiveness of the Philippine Small and Medium Enterprises

Elaine Q. Borazon and Vivien T. Supangco

The PIDS Discussion Paper Series constitutes studies that are preliminary and subject to further revisions. They are being circulated in a limited number of copies only for purposes of soliciting comments and suggestions for further refinements. The studies under the Series are unedited and unreviewed. The views and opinions expressed are those of the author(s) and do not necessarily reflect those of the Institute. Not for quotation without permission from the author(s) and the Institute.

CONTACT US:

Effect of Supply Chain Integration on the Business Performance and Competitiveness of the Philippine Small and Medium Enterprises

Elaine Q. Borazon Vivien T. Supangco

PHILIPPINE INSTITUTE FOR DEVELOPMENT STUDIES

September 2018

Abstract

This study aims to determine the effect of supply chain integration on the business performance and competitiveness of small and medium enterprises in the Philippines. A survey of 384 small and medium enterprises was done and structural equation modeling was used to test the hypothesis. Results show that internal integration strongly influences (p<0.001) both business performance (growth) and competitiveness of small and medium enterprises. Moreover, customer integration influences business performance (growth)and internal integration mediates the effect of supplier and customer integration in business performance (growth) and competitiveness of small and medium enterprises.

Keywords: Supply chain integration, SMEs, competitiveness, business performance

Table of Contents

I.	Introduction	4
II.	Review of Related Literature and Hypothesis Development	5
III.	Methodology	9
IV.	Results	11
V.	Discussion	15
VI.	Conclusion and Policy Recommendations	15
List o	f Tables	
Table	1. Predictor Measures	11
Table	2. Respondent Profile (n = 384)	12
Table	3. Average Variance Extracted Estimates	13
Table	4. Squared Interconstruct Correlation	13
Table	5. Fit indices	14
Tahla	6. Standardized structural nath estimates	14

Effect of supply chain integration on the business performance and competitiveness of the Philippine small and medium enterprises

Elaine Quintana Borazon* and Vivien dela Torre Supangco**

I. Introduction

Competition affects business development and competitiveness determines business prosperity. The small enterprises have potential for resilience to economic situations and are significant contributors to national economic development.

The APEC leaders, in 2016, agreed to create a "development path for APEC technical assistance and capacity building activities that build towards an equitable and inclusive APEC region" (APEC 2016, p. 1). The Asia Pacific Economic Cooperation has formed a Small and Medium Enterprises Working Group (SMEWG) who will work to "encourage the development of SMEs and to build their capacity to engage in international trade" (APEC 2017). The said group shall "promote competitive, balanced, inclusive, sustainable, innovative, and secure growth". Its priority areas for the year 2017-2020 includes entrepreneurship, innovation and the internet and digital economy; financing for business expansion and capability development; inclusive business ecosystem that supports SME growth; and market access for SMEs (APEC 2016, p. 2). All these factors aid SMEs to be competitive and succeed in the global value chain.

With the advent of the ASEAN integration leading to trade liberalizations, there is a decreased barrier to entry, making the local MSMEs more vulnerable to the arrival of new competitors. In 2016, the Philippine MSMEs account for 99.57 percent of the total establishments in the country, of which 0.44 percent are medium enterprises, 9.50 percent are small enterprises, and 89.63 percent are microenterprises (DTI 2018). Currently, the MSMEs, that are exporting commodities, are already experiencing obstacles related to trading. According to the survey conducted by ITC (2016), the Philippine micro, small, and medium enterprises experience obstacles related to exportation of their products, such as partner's regulations (technical requirements, conformity assessment,), Philippine regulations (export technical measures, export quantity control), and private standards (certification and other related requirements). These barriers could be addressed by focusing on enhancing the organizational resources and integrating with the whole supply chain. Thus, it is imperative that the supply chain integration factors that contribute to the competitiveness of the local firms be identified in order to assist the firms to survive and grow in their business environment.

According to Kim (2009), supply chain management enhances competitiveness and leads to high supply chain performance in terms of cost, time performance, flexibility, and quality through the integration of internal functions and linkages with the external operations of customers, suppliers, and other stakeholders in the chain. Integration also includes material and product flow from the suppliers to the consumers. It

^{*}Assistant Professor, Department of Hotel, Restaurant and Institution Management, College of Home Economics, University of the Philippines-Diliman, eqborazon@up.edu.ph

^{**} Professor, Virata School of Business, University of the Philippines-Diliman

requires an intra and inter-company integration across the chain in order for it to perform as a single unit (Alfalla-Luque and Medina-Lopez 2009) and which is driven by the demand of customers (Farhoomad 2005). Past studies (Vickery et al. 2003; Moyano-Fuentes 2010; Frohlich and Westbrook 2001) have shown that a higher level of supply chain integration leads to better organizational performance. A study of Vietnam's manufacturers has shown that their supply chain integration positively affects competitive advantage (Nguyen and Nguyen 2017). Moreover, supply chain integration among Japanese and Korean firms has shown to positively affect firm performance (Narasimhan and Kim 2002). However, according to Sofyalıoğlu and Öztürk (2012), few studies testing the direct relationship between supply chain integration and performance exist.

Thus, this study aims to: (1) determine the supply chain integration factors that enhance the performance and competitiveness of small and medium enterprises in the Philippines; (2) show the impact of supply chain integration on enhancing the performance and competitiveness of the small and medium enterprises in the Philippines; and (3) aid policymakers in crafting support interventions to help the small and medium enterprises compete in the midst of the ASEAN integration.

Therefore, this study will show the impact of internal integration, customer integration, and supplier integration on enhancing the performance and competitiveness of small enterprises in the Philippines. This will aid policymakers in crafting support interventions to aid the small enterprises compete in the midst of the ASEAN integration. This will also aid entrepreneurs or managers in improving their strategic resources and thereby increase their chance for competitiveness. This study has a significant importance for entrepreneurship education, entrepreneurial support, and entrepreneurship growth through the contribution of supply chain integration as a source of competitive advantage. This research will also contribute to the collective knowledge on resource-based theory as well as the impact of supply chain integration as a valuable, rare, inimitable, and non-substitutable resource on firm competitiveness. Moreover, research emphasis on the competitiveness of small enterprises as affected by supply internal integration, supplier integration, and customer integration for the small enterprises is very limited and no empirical studies related to the said factors in the Philippines has been done yet.

II. Review of Related Literature and Hypothesis Development

According to Porter (1990), competitiveness is the ability of firms to compete successfully in the business environment. Lall (2001) defines competitiveness as the ability of firms to do better than their competitors in terms of sales, profitability, and market share. Buckley, et al. (1988) claims that competitiveness is synonymous with long-term business performance and the ability to create superior value for the shareholders. In order to create superior value, firms depend on the endowment of their resources and capabilities, as claimed by the resource-based theory (Rangone 1999). Barney (1991; p. 101) defines resources as "assets, capabilities, organizational processes, firm attributes, information, knowledge, etc. that allow the firm to develop strategies benefiting its efficiency and effectiveness." According to Amit and Schoemaker (1993; p. 35), resources are "stocks of available factors that

are owned or controlled by the firm." The theory further claims that the differences in business performance of firms are affected by their resources which are unique to the firm (Wernerfelt 1984; Galbreath 2005). Firms implement strategies to manage their resources which then affect their business performance (Daft, Daft, Murphy, and Willmott 2010; Mosakowski 1993). Makadok (2001) claims that the choice of resources of firms affects the economic rent they generate. In order for firms to be at a competitive advantage, the said resources should be rare, valuable, nonsubstitutable, and perfectly inimitable (Barney 1991; Peteraf 1993; Rumelt 1987). According to Barney (1991), resources become valuable if they contribute to the efficiency and effectiveness of the firm, rare if not all firms have the same resource; inimitable if other firms cannot copy the said resource because of the resource's social complexity, historical conditions, or causal ambiguity, and nonsubstitutable if the resource cannot be replaced simply by another valuable resource. The said resources contribute to the firm's competitive advantage and therefore enhance business performance if the firm makes strategic decisions leading to a unique service or product attribute (Gibicus and Kemp 2003; Wernerfelt 1984; Conner 1991; Schulze 1992; Helfat and Peteraf 2003; Amit and Shoemaker 1993; Wernerfelt 1984).

Supply chain integration, according to Flynn et al. (2010), is the degree in which firms strategically collaborates with is chain partners and collaboratively manages inter- and intra-organizational processes. It therefore aims to achieve effective and efficient flow of services, information, products, money, and decisions in order to offer maximum value to the customer (Frohlich and Westbrook 2001). This leads to reductions related to purchasing and distributions and minimal inventory turnover efficiencies (Christopher 1993). Better customer value is also due to strategic performance improvements since supply chain integration allows the firm to provide supply chain members with more customized services that would satisfy their needs. Moreover, supply chain partners purchase higher volume to firms that offer higher customer value (Chen and Dubinsky 2003). Thus, supply chain integration leads to increase in sales and market share. Several studies (Lee 2004; Ragatz et al. 1997; and Frohlich and Westbrook 2001) have emphasized that integration with the downstream customers and upstream suppliers is a source of competitive advantage.

Flynn et al (2010) have identified internal integration, customer integration, and supplier integration as the three main dimensions of supply chain integration. Customer and supplier integration are often termed as external integration and is the degree to which the firm collaborates with the external chain in order to structure processes, practices, and organizational strategies (Stank et al. 2001). Internal integration focuses on the activities of the firm and is the degree to which a firm structures its own processes, practices, and organizational strategies to meet its customer's requirements (Kingman-Brundage et al. 1995; Cespedes 1996). The structural contingency theory suggests that the firm's fit with the external environment leads to consistency in the structure and strategies of the firm (Lawrence and Lorsch 1967; Burns and Stalker 1961). As the external environment, such as the characteristics of the suppliers and customer, changes, the firm should be able to respond by implementing strategies that will maintain its fit with the external environment (Kotha and Nair 1995; Hambrick 1983). According to Ketchen and Hult (2007), best value supply chains are considered inimitable resource. Supply

chain integration is a strategic resource that leads to competitive advantage and better organizational performance (Barney 2012). It allows firms to excel on their value-added activities while relying on their supply chain partners to complement the capabilities that the firm lacks (Jin et al. 2013; Dyer and Singh 1998; Fawcett et al. 2007).

Customer integration is collaborating and integrating between the firm and its customers so that downstream organizational activities are managed through jointdecision making, information sharing, and collaborative planning. This allows the firm to have an integration of information and resources from the customers to the decisions and processes of the firm (Vargo 2008). A close relationship with the customer enables the firm to accurately get demand information and therefore reduces obsolescence, failure in production planning, and product design. It also allows the firm to get data about market needs, which lead to better design and development leading to higher level of acceptability (Griffin and Hauser 1996). Moreover, it allows the firm to build a common understanding with its customers and thus helping them achieve better quality of products and process flexibility (Wong et al. 2011; Frohlich and Westbrook 2001; Scannell et al. 2000; Ettlie and Reza 1992). Customer integration also offers opportunities for leveraging on the information embedded in the collaboration process and thereby enables the firm to reduce costs, detect demand changes, create more value, and get better operational performance (Wong et al. 2011; Rosenzweig et al. 2003; Scannell et al. 2000). According to Homburg and Stock (2004), customer integration is directly related to customer satisfaction. Thus, it is hypothesized that:

- H1.1: Customer integration positively affects business performance of small and medium enterprises
- H1.2: Customer integration positively affects the competitiveness of small and medium enterprises

Supplier integration is partnership and collaboration with the suppliers in order to manage upstream organizational activities through collaborative information sharing, and joint decision making (Petersen et al. 2003; He et al. 2014). This allows the firm to access competencies and resources outside its organization and decrease transaction costs. It also facilitates mutual understanding between the supplier and the firm (Petersen et al. 2003). Sharing information with the suppliers lead to better operational performance through better product quality, reliable delivery, and flexibility (Frohlich and Westbrook 2001; Rosenzweig et al. 2003; Ettlie and Reza 1992; Wong et al. 2011; Huo 2012; Ataseven and Nair 2017; Prajogo et al., 2012). According to Flynn et al. (2010), a strong strategic partnership with the suppliers will enable an understanding and anticipation of the needs of the firm and will help the suppliers meet their changing requirements. The exchange of information between the firm and its suppliers about processes, capabilities, products, and schedule will help the firm improve its delivery performance. Based from the study of Koufteros et al. (2007), supplier integration positively affects product development performance and communications performance. Thus, it is hypothesized that:

- H2.1: Supplier integration positively affects business performance of small and medium enterprises
- H2.2: Supplier integration positively affects competitiveness of small and medium enterprises

Internal integration includes joint decision-making, collaboration, and information sharing across internal functions, leading to streamlined workflows and collaborative decisions (Wong et al. 2011; Lau et al. 2010. Thus, internal integration decreases functional barriers and allows cooperation among the internal departments of the firm in order to meet customer requirements (Flynn et al. 2010; Kingman-Brundage et al. 1995). It also allows the sharing of knowledge across functional teams and firms (Caridi et al. 2012; Roth 1996). This also helps the firm to improve its capability in order to exploit and coordinate its internal resources. The study by Saeed et al. (2005) shows that there is a positive relationship between internal integration and process efficiency. Past studies have shown that internal integration has a positive effect on firm performance and operational outcomes such as process flexibility, quality, and delivery performance (Narasimhan and Kim 2002; Swink et al. 2007; Lai et al. 2004; Narasimhan et al. 2010; Wong et al. 2011). Thus, it is hypothesized that:

- H3.1: Internal integration positively affects business performance of small and medium enterprises
- H3.2: Internal integration positively affects competitiveness of small and medium enterprises

Moreover, internal integration mediates the effect of external integration on firm performance (Sanders and Premus 2005). The study by Stank et al. (2010) has shown that firms which are externally focused in terms of information, risk collaboration, measurement, and reward affect logistical performance through the internal collaboration of the firm. If firms need to improve business performance through integration with suppliers and customers, they have to enhance their internal integration Thus, it is hypothesized that:

- H4.1: Internal integration mediates in the relationship between customer integration and business performance of small and medium enterprises
- H4.2: Internal integration mediates in the relationship between customer integration and competitiveness of small and medium enterprises
- H4.3: Internal integration mediates in the relationship between supplier integration and business performance of small and medium enterprises
- H4.4: Internal integration mediates in the relationship between supplier integration and competitiveness of small and medium enterprises

III. Methodology

1. Sources of Data

Snowball and convenience sampling of 1900 small and medium enterprises (upstream and downstream) from various parts of the Philippines (Aklan, Bulacan, Camarines Sur, Catanduanes, Cebu, Cotabato City, Davao, General Santos, Iloilo, Leyte, NCR, Nueva Vizcaya, Pampanga, Pangasinan, Rizal, Sorsogon) were conducted. Key informants were contacted personally, by e-mail or by phone to get their agreement to participate in the study. Supply chain manager, business owner, CEO/president, or director in each enterprise was targeted as the key informant. The survey questionnaire was emailed or was distributed personally and in-person interviews or self-administration was conducted. Follow-up telephone calls and e-mailings were done to improve the response rate.

Five hundred thirty-five responses were received and 384 were used in this study. Those with incomplete responses were discarded.

2. Research Instrument

The questionnaire is divided into four parts. The first part contains the demographic information of the respondents while the second part contains items to measure business performance and competitiveness. Business performance (growth) was measured using Likert scale anchored by anchored by much worse (1) to much better (7), while competitiveness was measured using Likert scale anchored on strongly disagree (1) to strongly agree (7). The third part contains a set of items to measure customer integration, supplier integration, and internal integration. Likert scales anchored by strongly disagree to strongly agree were used. The fourth part consists of questions regarding the characteristics of the firm – firm age and firm size (based on the number of employees), (see Appendix A for the instrument).

Dependent variable

The dependent variables are perceptual and objective measures of business performance (growth) and competitiveness. In terms of business performance, the respondents were asked to rate from much worse to much better than last year the following items: (1) growth in sales, (2) return on sales, (3) growth in return on sales, (4) growth in profit, (5) growth in market share, (6) return on investment; and (7) growth in return on investment. Competitiveness was assessed using a subjective rating relative to the major industry competitors on a seven-point scale. Items include: (1) In relation to my competitors, my company has a larger market share; (3) In relation to my competitors, my company gets a higher level of benefits; (4) In relation to my competitors, customer satisfaction in my company is higher; (6) In relation to my competitors, the quality of the products of my company is higher; and (7) In relation to my competitors, my company is technologically superior.

Independent variables

Customer integration

Customer integration is dealing with customers and understanding their needs and their considerations in the firm's business processes (Thun, 2010). This is measured using a modified versions of the questions developed by Flynn et al. (2010), Alfalla-Luque et al. (2015), Ellinger et al. (2000), Gimenez and Ventura (2005), and Speakman et al. (1998). The respondents were asked to rate from strongly disagree to strongly agree the following sample statements: (1) We frequently are in close contact with our customers; (2) Our customers give us feedback on our quality and delivery performance; (3) Our customers are actively involved in our product design process; (4) We strive to be highly responsive to our customers' needs; and (5) Our customers involve us in their quality improvement efforts. A seven-point Likert scale was used.

Supplier integration

Supplier integration is defined as having close cooperation with the firm's suppliers (Thun 2010). The respondents were asked to rate from strongly disagree to strongly agree the following sample statements, which were modified from Flynn et al. (2016), Alfalla-Luque et al. (2015), Ellinger et al. (2000), Gimenez and Ventura (2005), and Speakman et al. (1998): (1) We actively engage suppliers in our quality improvement efforts; (2) We maintain cooperative relationships with our suppliers; (3) We help our suppliers to improve their quality; (4) Our key suppliers provide input into our product development projects; and (5) We maintain close communications with suppliers about quality considerations and design changes A seven-point Likert scale was used.

Internal integration

Internal integration, referred by Kingman-Brundage et al. (1995) and Cespedes (1996) as the activities of the firm and is the degree to which a firm structures its own processes, practices, and organizational strategies to meet its customer's requirements. This was measured using a seven-item scale, modified from Flynn et al. (2016), Alfalla-Luque et al. (2015), Ellinger et al. (2000), Gimenez and Ventura (2005), and Speakman et al. (1998), to assess the information sharing, joint planning and cooperation among the functional teams of the firm. The respondents were asked to rate from strongly disagree to strongly agree the following sample statements: (1) The functions in our company are well integrated; (2) Problems between functions are solved easily in this company; (3) Functional coordination works well in our company; (4) The functions in our company cooperate to solve conflicts between them when they arise; and (5) Our company's departments coordinate their activities.

All instruments used have reliabilities of greater than 0.70, as shown in Table 1. The SME classification or size of the firm served as a control variable to remove confounding effects due to firm size.

Table 1. Predictor Measures

Variable	Number of Items	Format	Cronbach's Alpha	
Growth	7	Likert-type response scales	0.977	
Competitiveness	7	Likert-type response scales	0.931	
Customer Integration	7	Likert-type response scales	0.897	
Supplier Integration	5	Likert-type response scales	0.872	
Internal Integration	17	Likert-type response scales	0.969	

3. Data Analysis

A descriptive data was generated to obtain the general characteristics of the respondents. Common method bias was assessed through an exploratory factor analysis using principal axis factoring with varimax rotation. A Structural Equation Modelling (SEM) was used to test the hypotheses. The fit of the model was assessed using the Normed Chi-square (CMIN/df), Root Mean Square Error of Approximation (RMSEA), and Comparative Fit Index (CFI).

IV. Results

Table 2 summarizes the demographic characteristics of the respondents in the study. Firm age ranges from 0.2 years to 88 years old while the number of employees ranges from 1 to 1000. Female managers/owners comprise 58% of the respondents (n=384). Majority of the respondents are from the National Capital Region (38.3%) followed by Pampanga (12.2%), Aklan (8.6%), and Cotabato City (8.1%). In terms of business registration status, 45.1% are sole proprietorship, 33.1% are corporations, and 19.0% are partnerships. In terms of industry classification, 52.6% are restaurants, 18.2% are from wholesale and retail while 11.7% are manufacturing.

Table 2. Respondent Profile (n = 384)

Demographic Information	Minimum	Maximum
Firm Age (years)	0.2	88
Number of Employees	1	1000
Characteristics	Frequency	Percent
Gender of Owner/Manager		
Male	162	42
Female	222	58
Location		
Aklan	33	8.6
Bulacan	2	.5
Camarines Sur	27	7.0
Catanduanes	20	5.2
Cebu	1	.3
Cotabato City	31	8.1
Davao	6	1.6
General Santos	6	1.6
Iloilo	10	2.6
Leyte	28	7.3
NCR	149	38.8
Nueva Vizcaya	1	.3
Pampanga	47	12.2
Pangasinan	1	.3
Rizal	21	5.5
Sorsogon	1	.3
Business Registration Status		
Corporation	127	33.1
Partnership	73	19.0
Sole Proprietorship	173	45.1
Others	2	.5
undeclared	9	2.3
Industry, Classification		
Industry Classification	1	2
Agriculture	1	.3
Education	5	1.3
Electricity/gas/water supply	2 2	.5
Finance		.5
Fishing	1	.3
Health and social work	2	.5
Hotel	16	4.2
Hotel/Restaurant	17	4.4
Manufacturing	45	11.7
Others	14	3.6
Real estate	1	.3
Restaurant	202	52.6

Transport, storage,	4	1.0
communication		
Wholesale and retail trade	70	18.2

The Harman's one-factor test shows that the factor with the highest variance (37.82%) does not account for the majority of the variance and therefore a general factor is absent. Therefore, the variances due to measurement method will not affect the validity of the results of this study. Multicolinearity is absent as all variance inflation factors (VIFs, see Appendix B) are below 10 (Hair et al. 2010). Discriminant validity, which indicates whether a construct is unrelated with another construct (Hair et al. 2010) is established since the Average Variance Extracted (AVE) estimates (see Table 3) of the constructs are greater than the square of the interconstruct correlations (see Table 4).

Table 3. Average Variance Extracted Estimates

Construct	Average Variance Extracted Estimate
Growth	0.855
Competitiveness	0.66
Internal Integration(II)	0.62
Supplier Integration (SI)	0.59
Customer Integration (CI)	0.56

Table 4. Squared Interconstruct Correlation

	Growth	Competitiveness	II	SI	CI
Growth	1				
Competitiveness	0.36	1			
II			1		
SI			0.398161	1	
CI			0.465124	0.332929	1

The values of the fit indices (see Table 5) of the measurement model show a good fit {Comparative Fit Index (CFI) > 0.90; Root Mean Square Error of Approximation (RMSEA) <0.08; Normed chi-square (CMIN/df) < 2.0}. Comparative Fit Index implies how well the estimated model fits in comparison with some alternative baseline model while the RMSEA and CMIN/df tell how the theory fits well with the sample date (Hair et al. 2010). All the factor loadings of the items associated with the constructs have values of at least 0.70 and are significant and therefore convergent validity was established. The Cronbach Alphas are over 0.70 and therefore construct reliability was successfully verified.

Table 5. Fit indices

	Original	Modified	Structural
CMIN/DF	4.763	1.849	1.922
CFI	.717	.960	.957
RMSEA	.099 (.097101)	.047(.04305)	.049(.045053)
X^2	7835.643	1514.097	1577.911
df	1645	819	821
р	.000	.000	.000

Model equivalents to the CFA models were developed to examine the relationships between competitiveness and growth with customer integration supplier integration, and internal integration. Fit statistics of the structural regression model did not differ significantly. Standardized factor loadings were almost the same. Therefore, model equivalence is verified and the measured indicator variables are stable. These therefore support the model validity of the CFA (Hair et al. 2010).

Table 6 shows the standardized structural path estimates. Two structural path estimates are significant at p<0.05 and four structural path estimate is significant at p<0.001 and in the expected direction. Solution of the model produced an acceptable fit.

Table 6. Standardized structural path estimates

	Standardized Regression Weights-without mediation	Standardized Regression Weights-with mediation
Business Performance< CI	0.288**	0.237*
Business Performance < SI	-0.061	-0.055
Business Performance < II	0.328**	0.325**
Competitiveness < Cl	0.215*	0.160
Competitiveness < SI	0.000	-0.016
Competitiveness < II	0.480**	0.484**
II < SI		0.372**
II < CI		0.531**

^{*} significant at p<0.05

^{**} significant at p<0.001

V. Discussion

The results of this study suggest that internal integration strongly influences (p<0.001) both business performance (growth) and competitiveness. Moreover, customer integration influences business performance (growth), but not competitiveness. However, the effect of supplier integration on business performance (growth) and competitiveness is fully mediated by internal integration, and the effect of customer integration on business performance (growth) and competitiveness is partially mediated by internal integration

Customer integration predicts positive (p<0.05) business performance (growth) of small and medium enterprises because this allows firms to conduct collaborative planning, information sharing, and joint-decision making (Vargo 2008). These enable them to accurately get demand information and prevent them from failing in production planning and product design. Moreover, customer integration gives opportunities for firms to leverage on information embedded in the collaboration process, thereby enabling them to reduce costs, create more value, and have better performance (Wong et al. 2011; Rosenzweig et al. 2003; Scannell et al. 2000).

Supplier integration is supposed to positively affect business performance (growth) and competitiveness of firms as it affects operational performance through reliable delivery, better product quality, and flexibility (Wong et al. 2011; Ettlie and Reza 1992; Frohlich and Westbrook 2001; Rosenzweig et al. 2003). This study has shown an absence of direct association between supplier integration and business performance (growth) and competitiveness of firms. While similar studies (Stank et al. 2001; Flynn et al. 2010) show the same results, we have gone further by testing the mediation effect of internal integration on supplier integration and have shown that the effect of supplier integration is realized through internal integration

Internal integration positively affects (p<0.001) business performance (growth) and competitiveness of small and medium enterprises and this supports other studies conducted by Narasimhan and Kim 2002; Swink et al., 2007; Lai et al. 2004; Narasimhan et al. 2010; Wong et al. 2011. Internal integration allows cooperation among the internal departments of the firms and decreases functional barriers (Flynn et al. 2010; Kingman-Brundage et al. 1995), thereby affecting process efficiency (Saeed et al. 2005). Internal integration also mediates the relationship between external integration (suppliers and customers) and business performance (growth) and competitiveness of the small and medium enterprises. Thus, the effect of external integration (suppliers and customers) on business performance (growth) and competitiveness will work through the internal integration. This implies that the impact of external integration (customer and supplier integration) on business performance and competitiveness will take effect if the internal integration is in place.

Conclusion and Policy Recommendations

This study was designed to determine the effect of supply chain integration on the growth and competitiveness of small and medium enterprises in the Philippines on the basis of resource-based theory. Majority of the respondents in the said study are from the National Capital Region and are from the service/restaurant sector. Thus, the conclusion is industry and geography-specific.

The empirical findings show that customer integration positively affects business performance (growth) while internal integration positively affects both business performance (growth) and competitiveness of the small and medium enterprises. While other studies (Huo 2012; Ataseven and Nair 2017; Prajogo et al. 2012) show direct relationship between supplier integration and business performance (growth) and competitiveness, this study reveals that its effect on the two variables are realized through the effectiveness of internal integration.

This study supports the resource-based theory in explaining the business performance (growth) and competitiveness of small and medium enterprises in the Philippines. SMEs have limited resources to be fully integrated in the whole supply chain and therefore would find opportunities or make strategies according to what they think is effective (Miller 1987).

The finding of this study that internal integration significantly affects business performance (growth) and competitiveness suggests that firms should structure its internal organizational processes and strategies to meet their customer requirements and should promote collaboration and cooperation across their various internal processes in order to achieve better business performance and competitiveness. Internal integration can be attained through functional coordination, integration of internal functions, internal communication, and generating effective operational and production plans. Moreover, firms should integrate with its customers so that downstream organizational activities, such as information sharing, collaborative planning, and joint-decision making can be achieved. Customer integration can be accomplished by getting feedback from the customers regarding quality and delivery performance, getting the involvement of customers in product or service design process, sharing production plans with the customers, and making joint decisions with the key customers. This study implies that all kinds of integration are important but managers should pay particular attention to internal integration because the effectiveness of both customer and supplier integration works through the internal integration of the firm.

The government can aid SMEs in terms of strengthening their internal integration by providing support that will enhance the SMEs' application of management skills, such as the generation of effective operational and production plans and functional coordination. The SMEs should also be encouraged and educated to use information systems that will aid in the integration of various internal processes. The government can invest in technologies, such as Enterprise Application Integration, which will help firms integrate their processes through sharing of information (Charles et al. 2001; Chen et al. 2011). There should also be promotion mechanisms for information technology adoptions, such as educational programs, and the government should serve as a trigger to aid the small and medium enterprises catch up with the rapid

advances in technology. The Taiwan government, for example, has built a national ICT infrastructure that aid their enterprises in supply chain integration by acting as a platform for information sharing across the supply chain (Chen et al. 2011; Wang 1999; Lee and Kim 2007). Assistance in terms of technological capabilities and B2B e-commerce can also enhance the international competencies of SMEs because of efficient business transactions and communications (Chen, et al. 2011). The Department of Trade and Industry has included in its Micro, Small and Medium Enterprise (MSME) Development Plan 2017-2022 the promotion of digital and internet economy under the cross-cutting strategies. The said plan 'welcomes different developments to further pursue its goals by leveraging technological improvements and extending it to all MSMEs'. Moreover, the government should be able to set up an effective mechanism that will unify all regulatory bodies and reduce redundancies and excess costs, which affect supply chain performance.

Bibliography:

- Alfalla-Luque, R., Medina-Lopez, C. 2009. Supply chain management: unheard of in the 1970s' core to today's company. *Bus. Hist.* 51(2), 202–221.
- Amit, R. P. and Schoemaker, J. H. 1993. Strategic assets and organizational rent. Strategic Management Journal, pp.14 33–46.
- Ataseven C. and Nair A. 2017. Assessment of supply chain integration and performance relationships: A meta-analytic investigation of the literature. *International Journal of Production Economics*, 185, 252-265.
- Barney, J. 1991. Firm resources and sustained competitive advantage. Journal of Management, 17, pp. 99-120.
- Buckley, P.J.; Pass, C.L.; Prescott, K. 1988. Measures of international competitiveness: A critical survey. *J. Mark. Manag.*, 4, 175–200.
- Burns, T. and Stalker, G.M. 1961. *The management of innovation*, 2nd edn, Tavistock Pubs., Lond.
- Caridi, M., Pero, M., Sianesi, A. 2012. Linking product modularity and innovativeness to supply chain management in Italian furniture industry. *International Journal of Production Economics*, 136(1), 207-217.
- Cespedes, F. 1996. Beyond teamwork: How the wise can synchronize. *Marketing Management*, 5(1), 25-37.
- Charles, C., Bauer, P. and Bauer, M. J. 2001. *E-Supply Chain*, Berrett-Koehler Publishers, Inc, San Francisco, CA.
- Chen, Z., and Dubinsky, A. J. 2003. A conceptual model of perceived customer value in e-commerce: a preliminary investigation. *Psychology and Marketing*, 20(4), 323e347.
- Chen, H., Papazafeiropoulou, A. and Wu, C. 2011. An E-Government Initiative to Support Supply Chain Integration for Small to Medium Sized Enterprises: Successes and Challenges. *The DATA BASE for Advances in Information Systems*, 42(4), 63-80.
- Christopher, M. 1993. Logistics and competitive strategy. *European Management Journal*, 11(2), 259e261.
- Conner, K. R. 1991. A historical comparison of resource-based theory and five schools of thought within industrial organization economics: Do we have a new theory of the firm?, *Journal of Management*, 17, 121-154.
- Cooper, R.G., 2011. Winning at New Products: Creating Value through Innovation. (4th ed.). *Basic Books*. New York.

- Daft, R., Daft, L., Murphy, J. and Willmott, H. 2010. Organization theory and design. Cengage Learning EMEA. Retrieved from http://books.google.com.ph/books/about/Organization Theory and Design.html?id=s6MAkpcuaZQC&redir esc=y.
- Dyer, J., & Singh, H. 1998. The relational view: Cooperative strategies and sources of inter-organizational competitive advantage. *Academy of Management Review*, 23(4), 660–679
- Ellinger, A. E., Daugherty, P. J., and Keller, S. B. 2000. The relationship between marketing/logistics interdepartmental integration and performance in U.S. manufacturing firms: an empirical study. *Journal of Business Logistics*, 21, 1–17.
- Ettlie, J.E., Reza, E. 1992. Organizational integration and process innovation. *Acad. Manag. J.* 34, 795–827.
- Farhoomad, A. 2005. Managing e-business transformation, a global perspective.

 New York, NY: Palgrave Macmillan.
- Fawcett, S. E., Osterhaus, P., Magnan, G. M., Brau, J. C., and McCarter, M. C. 2007. Information sharing and supply chain performance: the role of connectivity and willingness. *Supply Chain Management: An International Journal*, 12 (5), 358–368.
- Frohlich, M.T. and Westbrook, R. 2001. Arcs of integration: an international study of supply chain strategies. *Journal of Operations Management*, 19 (2), 185–200.
- Flynn, B.B., Huo, B., Zhao, X. 2010. The impact of supply chain integration on performance: a contingency and configuration approach. *J. Oper. Manag.* 28 (1), 58–71.
- Galbreath, J. 2005. Which resources matter the most to firm success? An exploratory study of resource-based theory. *Technovation*, 25, 979–987.
- Gibicus, P. and Kemp, R.G.M. 2003. Strategy and small firm performance. Research Report H200208: Scientific Analysis of Entrepreneurship and SMEs.
- Gimenez, C. and Ventura, E. (2005). Logistics-production, logistic marketing and supply chain integration: Their impact on performance. *International Journal of Operations and Production Management*, 25(1), 20-38.
- Griffin, A. and Hauser, J.R. 1996.Integrating R&D and Marketing: A review and analysis of the literature. *Journal of Product Innovation Management*, 13 (3), 191-215.
- Hair, J.F., Black, W.C., Babin, B.J., and Anderson, R.E. 2010. Multivariate data analysis, 7th ed. Prentice Hall: Upper Saddle River, New Jersey.

- Hambrick, D. C. 1983. Some tests of the effectiveness and functional attributes of Miles and Snow's strategic types. *Academy of Management Journal*, 26, 5-25.
- He, Y., Lai, K.K., Sun, H., Chen, Y. 2014. The impact of supplier integration on customer integration and new product performance: the mediating role of manufacturing flexibility under trust theory. Int. J. Prod. Econ. 147, 260–270.
- Helfat, C. and Peteraf, M. 2003. The Dynamic resource-based view: Capability lifecycles. *Strategic Management Journal*, 24, 997-1010.
- Homburg, C. and Stock, R. 2004. The link between sales people's job satisfaction and customer satisfaction in a business-to- business context: A dyadic analysis. *Journal of the Academy of Marketing Science*, 32 (April), 144–58
- Huo, B. 2012. The impact of supply chain integration on company performance: an organizational capability perspective. *Supply Chain Management: An International Journal*, 17(6), 596-610.
- Jin, Y., Fawcett, A. and Fawcett, S. 2013. Awareness is not enough: commitment and performance implications of supply chain integration. *International Journal of Physical Distribution and Logistics Management*, 43(3), 205-230.
- Ketchen, D. J., & Hult, G. T. M. 2007. Toward greater integration of insights from organization theory and supply chain management. *Journal of Operations Management*, 25(2), 455-458
- Kim, S.W. 2009. An investigation on the direct and indirect effect of supply chain integration on firm performance. *Int. J. Production Economics*, 119, 328–346.
- Kingman-Brundage, J, George, WR and Bowen, DE. 1995. Service logic: achieving service system integration. *International Journal of Service Industry Management*, 6 (4), 20-39.
- Kotha, S and Nair A. 1995. Strategy and Environment as Determinants of Performance: Evidence from the Japanese Machine Tool Industry. *Strategic Management Journal*, 16(7),497-518.
- Koufteros, X. A., Edwin Cheng, T. C., and Lai, K. H. 2007. "Black-box" and "gray-box" supplier integration in product development: antecedents, consequences and the moderating role of firm size. *Journal of Operations Management*, 25(4), 847-870.
- Lall, S. 2001. Competitiveness, Technology and Skills; Edward Elgar Publishing: Cheltenham, UK.
- Lau, A., Yam, R., and Tang, E. 2010. Supply chain integration and product modularity: An empirical study of product performance for selected Hong Kong manufacturing industries. *International Journal of Operations & Production Management*, 30, 20-56.

- Lawrence, P. and Lorsch, J. 1967. Differentiation and Integration in Complex Organizations. *Administrative Science Quarterly*, 12, 1 30.
- Lee, H. L. 2004. The Triple-A Supply Chain. *Harvard Business Review*, 82(10), 102-112
- Lee, J. and Kim, J. 2007. 'Grounded theory analysis of e-Government Initiatives: Exploring Perceptions of Government Authorities', *Government Information Quarterly*, 249(1), 135-147.
- Makadok, R. 2001. Toward a synthesis of the resource-based and dynamic-capability views of rent creation. Strategic Management Journal, 22, pp. 387-401.
- Miller, D. 1987. The Genesis of Configuration. *Academy of Management Review*, 12(4), 686-701
- Mosakowski, E. 1993. A resource-based perspective on the dynamic strategy-performance relationship: an empirical examination of the focus and differentiation strategies in entrepreneurial firms. *Journal of Management*, December 22, 1993.
- Moyano-Fuentes, J., et al. 2012. El papel de las TIC en la bu'squeda de la eficiencia: un ana'lisis desde Lean Production y la integracio'n electro'nica de la cadena de suministro. Cuadernos de Economi'a y Direccio'n de la Empresa (in press).
- Narasimhan, R. and Kim, S.W. 2002. Effect of supply chain integration on the relationship between diversification and performance: evidence from Japanese and Korean firms. *Journal of Operations Management*, 20, 303-323.
- Nguyen, P.V. and Nguyen, L.T. 2017. Performance Measurement of supply chain integration in Manufacturing firms of Southeast Vietnam. *European Journal of Economic and Management*, 6(2), April.
- Peteraf, M. A. 1993. The cornerstones of competitive advantage: a resource-based view. *Strategic Management Journal*, 14, 179-191.
- Petersen, K.J., Handfield, R., Ragatz, G.L. 2003. A model of supplier integration into new product development. *J. Prod. Innov. Manag.* 20 (4), 284–299.
- Porter, M.E. 1990. *The Competitive Advantage of Nations*; Free Press: New York, NY, USA.
- Prajogo, D., Chowdhury, M., Yeung, A.C.L., Cheng, T.C.E. 2012. The relationship between supplier management and firm's operational performance: a multidimensional perspective. *Int. J. Prod. Econ.* 136 (1), 123–130.
- Ragatz, G.L., Handfield, R.B., Scannell, T.V. 1997. Success Factors for Integrating Suppliers into New Product Development. *Journal of Product Innovation*

- Management, 14, 190-202
- Rangone, A. 1999. A resource-based approach to strategy analysis in small-medium sized enterprises. Small Business Economics, 12(3), pp. 233-48.
- Rosenzweig, E.D., Roth, A.V., Dean Jr., J.W. 2003. The influence of an integration strategy on competitive capabilities and business performance: an exploratory study of consumer products manufacturers. *J. Oper. Manag.* 21, 437–456.
- Roth, A.V., 1996. Achieving strategic agility through economies of knowledge. *Strategy and Leadership*, 24(2), 30-37.
- Rumelt, R.P. 1987. Theory, strategy and entrepreneurship. In The competitive challenge. Ed. David J. Teece. New York: Harper & Row, 137-158.
- Saeed, K. A., Malhotra, M. K., and Grover, V. 2005. Examining the impact of interorganizational systems on process efficiency and sourcing leverage in buyersupplier dyads. *Decision Sciences*, 36(3), 365–396.
- Sanders, N.R. and Premus, R. 2005. Modeling the relationship between firm IT capability, collaboration, performance. *Journal of Business Logistics*. 26 (1), 1-23.
- Schulze, W. S. 1992. The two resource-based models of the firm: Definitions and implications for research, Academy of Management Proceedings, pp. 37-41.
- Speakman, R. E., Kamauff Jr, J. W. and Myhr, N. 1998, An empirical investigation into supply chain management: A perspective on partnerships, *International Journal of Physical Distribution & Logistics Management*, 28 (8).
- Stank, T.P., Keller, S.B. and Daugherty, P.J. 2001. Supply chain collaboration and logistical service performance. *Journal of Business Logistics*, 22(1), 29-47.
- Swink, M.L., Narasimhan, R., Wang, C. 2007. Managing beyond the factory walls: Effects of four types of strategic integration on manufacturing plant performance. *Journal of Operations Management*, 25, 148-164.
- Thun, J.H. 2010. Angles of integration: an empirical analysis of the alignment of internet-based information technology global supply chain integration. *J. Supply Chain Management*, 46(2), 30-44.
- Vargo, S.L. 2008. Customer integration and value creation: paradigmatic traps and perspectives. *J. Serv. Res.* 11 (2), 211–215.
- Scannell, T.V., Vickery, S.K., Dr€oge, C.L. 2000. Upstream supply chain management and competitive performance in the automotive supply chain industry. *J. Bus. Logist.* 21 (1), 23–48.
- Sofyalıoğlu, C., Öztürk, Ş. (2012). Meta analysis of the relationship between supply chain integration dimensions and firm Performance. *European Journal of Economics, Finance and Administrative Sciences*, 52, 99-119.

- Vickery, S.K., et al. 2003. The effects of an integrative supply chain strategy on customer service and financial performance: an analysis of direct versus indirect relationships. *Journal of Operations Management*, 21 (5), 523–539.
- Wang, E.H. 1999. 'ICT and economic development in Taiwan: analysis of the evidence', *Telecommunications Policy*, 23 235–243.
- Wernerfelt, B. 1984. A resource-based view of the firm. *Strategic Management Journal*, 5, pp. 171-180.
- Wong, C.Y., Boon-itt, S., Wong, C.W.Y. 2011. The contingency effects of environmental uncertainty on the relationship between supply chain integration and operational performance. *J. Oper. Manag.* 29 (6), 604–615.

Appendix A Survey Questionnaire

Dear **Respondent**:

Greetings!

We are faculty members from the University of the Philippines-Diliman and are currently conducting a study on 'The effect of supply chain integration on the competitiveness of the Philippine small enterprises'. The said research hopes to aid policymakers in crafting support interventions for sustainable small enterprises. May we ask you to participate in the study by answering the questionnaire attached which will provide the basis of our analyses.

Rest assured that your responses will be treated confidentially.

Should you have questions, you may get in touch with us through elainedborazon@yahoo.com or 639286026087. Should you also be interested to know the results of this study, we would be very happy to send you a copy of the research report. Please indicate your email address in the survey questionnaire.

Thank you very much for your cooperation.

Sincerely,

Elaine Q. Borazon,PhD Vivien T. Supangco, DBA

Part A. Characteristics of the Small enterprise owner/Manager

Name (Optional):	Position:	Email Address:
1. Age: 2. Gender Male Female		
3. Highest educational at	tainment	
Elementary High school College Major: Masters Major: PhD Major: Others (Please s	 pecify) :	
Work experience (excluding	experience in your own firm)	
4. Years of work experie	nce (excluding experience in you	r own firm):
5. In what functional are from own firm)? (Chec		ined experience (excluding experience
General Manage Marketing/Sales Human Resource Engineering Accounting/Fina Production/Ope Purchasing/Log Research and De	e Management ance rations istics	
Based from your answer/s in (Question 5:	
		ling experience in your own firm) you had or each of your answer in Question 5.

Part B. Please evaluate your company's performance (compared with last year) in the following areas:

(1 = much worse; 7 = much better).

	Much worse	Much worse				Much better	
	1	2	3	4	5	6	7
Growth in sales.							
Return on sales (Net income/sales).							
Growth in return on sales.							
Growth in profit.							
Growth in market share.							
Return on investment (ROI).							
Growth in ROI.							

Please evaluate your company's performance in the following areas relative to your competitors:

(1 = strongly disagree; 7 = strongly agree).

	Strongly	Disagree	Somewhat	Neither	Somewhat	Agree	Strongly
	Disagree		Disagree	Agree	Agree		Agree
				nor			
				Disagree			
	1	2	3	4	5	6	7
In relation to my competitors, my							
company has higher sales							
In relation to my competitors, my							
company has a larger market share							
In relation to my competitors, my							
company gets a higher level of							
employee benefits							
In relation to my competitors, my							
company gets a higher return							
In relation to my competitors, customer							
satisfaction in my company is higher							
In relation to my competitors, the							
quality of the products of my company							
is higher							
In relation to my competitors, my							
company is technologically superior							

What is the net income growth (in percent (%)) of your business?
Net income growth ={[(actual net income- previous net income)/(previous net income)]x
100}
How long (in years or months) did it take you to recover your initial investment?

Part C. Please indicate the extent of integration or information sharing between your organization and your major customer/supplier in the following areas (1 = strongly disagree; 7 = strongly agree).

 8-3 8 1		J·					
	Strongly	Disagree	Somewhat	Neither	Somewhat	Agree	Strongly
	Disagree		Disagree	Agree	Agree		Agree
				nor			

					Disagree			
		1	2	3	4	5	6	7
1.	We frequently are in close contact with our customers.							
2.	Our customers give us feedback on our quality and delivery performance.							
3.	Our customers are actively involved in our product or service design process.							
4.	We strive to be highly responsive to our customers' needs.							
5.	Our customers involve us in their quality improvement efforts.							
6.	We work as a partner with our customers.							
7.	We have a quick ordering system with our customer.							
8.	Our customers share Point of Sales (POS) information with us.							
9.	Our customers share demand forecast with us.							
10.	We share our available inventory with our major customer.							
11.	We do not share our production plan with our major customer.							
12.	We make joint decisions with our key customers							
13.	We actively engage suppliers in our quality improvement efforts.							
14.	We maintain cooperative relationships with our suppliers.							
15.	We help our suppliers to improve their quality.							
16.	Our key suppliers provide input into our product development projects.							
17.	We maintain close communications with suppliers about quality considerations and design changes.							
18.	Our suppliers are actively involved in our new product development process.							
19.	We do not work as a partner with our suppliers							
	•	Strongly Disagree	Disagree	Somewhat Disagree	Neither Agree nor Disagree	Somewhat Agree	Agree	Strongly Agree
		1	2	3	4	5	6	7
20.	We have quick ordering systems with our major supplier.							
21.	We strive to establish long-term relationships with suppliers.							
22.	We share information on sales forecasts with key suppliers.							
23.	We do not share information on							
	production plans with key							

	1.	I	I	1		1		
	suppliers.							
24.	We share information on order							
	tracking and tracing with key							
	suppliers.							
25.	We share information on delivery							
	status with key suppliers.							
26.	We share information on stock							
	levels with key suppliers.							
27.	We make joint decision-making							
	with our key suppliers							
28.	The functions in our company are							
	well integrated							
29.	Problems between functions are							
	solved easily in this company.							
30.	Functional coordination works							
	well in our company.							
31.	The departments in our company							
	cooperate to solve conflicts							
	between them when they arise.							
32.	Our company's departments							
	coordinate their activities							
33.	Our company's departments work							
	interactively with each other							
34.	Our managers communicate							
	effectively with managers in other							
	departments.							
35.	Our planning system generates							
	operations plans that do not							
	result in functional conflicts.							
36.	Everyone in the company works							
	well together							
37.	We in the company share our sales							
	forecast with our purchasing							
	department (or with anyone involved							
	in purchasing).							
38.	We in the company share our							
	production plans with our purchasing							
	department (or with anyone involved							
20	in purchasing). We in the company share our							
37.	production progress and stock levels							
	with our purchasing department (or							
	with anyone involved in purchasing).							
	, i	Strongly	Disagree	Somewhat	Neither	Somewhat	Agree	Strongly
		Disagree	8	Disagree	Agree	Agree	8	Agree
		8		8	nor	9		8
					Disagree			
		1	2	3	4	5	6	7
40.	We in the company make joint							
	decisions in terms of sales							
	forecast with our purchasing							
	department (or with anyone							
	involved in purchasing).							
41	We in the company make joint							
1								
	decisions in terms of stock level		I	1	1		1	
	decisions in terms of stock level with our purchasing department							
	with our purchasing department							
	with our purchasing department (or with anyone involved in							
42	with our purchasing department							

decisions in terms of production plans with our purchasing						
department (or with anyone						
involved in purchasing).						
43. We in the company make joint						
decisions with our sales						
department (or with anyone						
involved in sales).						
44. We in the company do not share						
information, such as sales						
forecasts with our sales						
department (or with anyone						
involved in sales).						
45. We in the company share						
information, such as production						
plans with our sales department						
(or with anyone involved in						
sales).						
46. We in the company share						
information, such as production						
progress and stock levels, with						
our sales department (or with						
anyone involved in sales).						
 When was your firm es How many employees you have? What is your business to the proprietors are partnership corporation 	(average nu	mber of w	orkers in a y	ear plus ma	inagement) d	io
Others:						
4. Your SME classification						
4. Tour SME classification						
Small (A	Asset size of Asset size of a (Asset size	PhP 3.0M	to 15M)			
5. Your industry classifica	tion					
Agriculture						
Fishing						
Mining and Quarry	ina					
		in product	1			
Manufacturing: Electricity/gas/wa		ını product	J			
Electricity/gas/wa	iei suppiy					

		Wholesale and retail trade
		Hotels
		Restaurants
		Transport, storage, communication
		Finance (banking, insurance)
		Real estate
		Education
		Health and social work
		Others:
6.	You	r industry type (if manufacturer):
		Component manufacturer
		Final product manufacturer

Thank you very much for your time!

Appendix B Multicollinearity Diagnostics

Coefficients

			10	Standardized			0 111 11	0, ", "
		Unstandardize		Coefficients		0:	Collinearity	
Model	(0 1 1)	В	Std. Error	Beta	t 500	Sig.	Tolerance	VIF
1	(Constant)	1.029	.648	100	1.588	.113		
	S1	.170	.096	.129	1.770	.078	.367	2.726
	S2	.031	.108	.023	.290	.772	.301	3.321
	S3	.073	.082	.067	.900	.369	.351	2.847
	S4	.119	.107	.080	1.108	.269	.379	2.640
	S5	153	.097	127	-1.568	.118	.296	3.378
	S6	.011	.091	.009	.115	.908	.317	3.151
	S7	.102	.088	.082	1.167	.244	.396	2.523
	S8	100	.063	132	-1.576	.116	.277	3.614
	S9	.033	.068	.042	.482	.630	.256	3.913
	S10	.062	.055	.085	1.120	.264	.340	2.939
	S11	052	.047	066	-1.109	.268	.544	1.838
	S12	.052	.052	.064	1.006	.315	.476	2.102
	S13	058	.071	055	807	.420	.428	2.339
	S14	.185	.111	.137	1.658	.098	.285	3.508
	S15	.131	.099	.103	1.328	.185	.325	3.074
	S16	166	.089	154	-1.878	.061	.292	3.424
	S17	040	.094	032	422	.673	.335	2.987
	S18	.032	.070	.033	.451	.652	.372	2.686
	S19	123	.042	185	-2.932	.004	.493	2.030
	S20	.063	.085	.053	.745	.456	.385	2.600
	S21	.050	.085	.039	.582	.561	.445	2.248
	S22	050	.058	061	856	.393	.383	2.610
	S23	.056	.049	.065	1.137	.256	.590	1.695
	S24	.034	.078	.034	.432	.666	.313	3.196
	S25	080	.091	079	878	.381	.239	4.178
	S26	.021	.072	.023	.296	.767	.326	3.066
	S27	008	.063	010	134	.894	.340	2.943
	S28	027	.112	021	239	.811	.248	4.039
	S29	.040	.127	.032	.319	.750	.195	5.122
	S30	.044	.125	.035	.353	.724	.202	4.950
	S31	044	.130	035	339	.735	.188	5.320
	S32	.018	.148	.014	.120	.904	.154	6.480
	S33	.158	.151	.120	1.045	.297	.149	6.712
	S34	162	.118	125	-1.370	.172	.236	4.239

S35	.038	.106	.030	.358	.721	.286	3.493
S36	058	.102	042	570	.569	.358	2.795
S37	.104	.115	.096	.906	.366	.174	5.755
S38	.029	.119	.027	.245	.806	.166	6.038
S39	077	.113	065	681	.496	.213	4.705
S40	.047	.137	.042	.345	.730	.131	7.637
S41	.007	.165	.006	.042	.967	.096	10.398
S42	.278	.157	.245	1.764	.079	.101	9.867
S43	043	.104	038	415	.678	.240	4.175
S44	048	.040	071	-1.206	.229	.561	1.783
S45	200	.136	179	-1.471	.142	.133	7.537
S46	.091	.140	.079	.653	.514	.133	7.524
SME class	.231	.084	.136	2.752	.006	.806	1.241

a. Dependent Variable: Y1

Coefficients^a

		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.175	.645		1.822	.069		
	S1	.190	.095	.146	1.990	.047	.367	2.726
	S2	.059	.108	.045	.553	.581	.301	3.321
	S3	.029	.081	.027	.363	.717	.351	2.847
	S4	.061	.107	.041	.566	.572	.379	2.640
	S5	082	.097	069	841	.401	.296	3.378
	S6	011	.090	009	119	.905	.317	3.151
	S7	.085	.087	.069	.972	.332	.396	2.523
	S8	018	.063	025	293	.769	.277	3.614
	S9	.044	.068	.057	.652	.515	.256	3.913
	S10	.022	.055	.030	.399	.690	.340	2.939
	S11	002	.047	002	038	.970	.544	1.838
	S12	.045	.051	.056	.872	.384	.476	2.102
	S13	097	.071	093	-1.362	.174	.428	2.339
	S14	.129	.111	.097	1.168	.244	.285	3.508
	S15	.190	.098	.151	1.930	.054	.325	3.074
	S16	198	.088	185	-2.244	.025	.292	3.424
	S17	.063	.093	.052	.678	.499	.335	2.987
	S18	.008	.070	.008	.114	.910	.372	2.686
	S19	148	.042	225	-3.547	.000	.493	2.030
	S20	.001	.084	.001	.007	.994	.385	2.600
	S21	.010	.085	.008	.121	.904	.445	2.248
	S22	038	.058	047	654	.514	.383	2.610

S23	.070	.049	.083	1.436	.152	.590	1.695
S24	.111	.078	.113	1.420	.157	.313	3.196
S25	134	.091	134	-1.475	.141	.239	4.178
S26	.002	.071	.002	.022	.982	.326	3.066
S27	.078	.062	.095	1.248	.213	.340	2.943
S28	096	.112	077	861	.390	.248	4.039
S29	.185	.126	.148	1.470	.143	.195	5.122
S30	020	.124	016	159	.874	.202	4.950
S31	042	.130	033	323	.747	.188	5.320
S32	.034	.147	.026	.233	.816	.154	6.480
S33	.154	.150	.118	1.022	.308	.149	6.712
S34	158	.117	123	-1.343	.180	.236	4.239
S35	.052	.105	.041	.497	.620	.286	3.493
S36	156	.102	114	-1.528	.128	.358	2.795
S37	.143	.115	.133	1.247	.213	.174	5.755
S38	060	.118	056	510	.610	.166	6.038
S39	121	.113	104	-1.076	.283	.213	4.705
S40	.002	.136	.002	.013	.990	.131	7.637
S41	.017	.164	.015	.105	.917	.096	10.398
S42	.302	.157	.269	1.927	.055	.101	9.867
S43	.009	.103	.008	.086	.931	.240	4.175
S44	033	.039	050	837	.403	.561	1.783
S45	223	.136	201	-1.643	.101	.133	7.537
S46	.158	.139	.138	1.132	.259	.133	7.524
SME class	.172	.083	.102	2.062	.040	.806	1.241

a. Dependent Variable: Y2

Coefficients^a

		Unstand	lardized	Standardized				
		Coefficients		Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.664	.660		2.521	.012		
	S1	.147	.098	.111	1.509	.132	.367	2.726
	S2	.029	.110	.022	.267	.790	.301	3.321
	S3	.089	.083	.081	1.073	.284	.351	2.847
	S4	.098	.109	.065	.893	.372	.379	2.640
	S5	169	.099	139	-1.701	.090	.296	3.378
	S6	013	.093	011	136	.892	.317	3.151
	S7	.074	.089	.058	.827	.409	.396	2.523
	S8	.011	.064	.014	.168	.866	.277	3.614
	S9	.012	.070	.015	.167	.868	.256	3.913
	S10	.051	.056	.069	.899	.369	.340	2.939

S11	.004	.048	.005	.088	.930	.544	1.838
S12	.039	.052	.048	.740	.460	.476	2.102
S13	096	.073	090	-1.319	.188	.428	2.339
S14	.197	.113	.145	1.740	.083	.285	3.508
S15	.149	.101	.116	1.485	.139	.325	3.074
S16	135	.090	124	-1.500	.135	.292	3.424
S17	057	.095	046	600	.549	.335	2.987
S18	.011	.072	.011	.157	.875	.372	2.686
S19	147	.043	218	-3.428	.001	.493	2.030
S20	.035	.086	.029	.406	.685	.385	2.600
S21	.041	.087	.032	.473	.636	.445	2.248
S22	055	.059	068	939	.349	.383	2.610
S23	.022	.050	.026	.450	.653	.590	1.695
S24	.075	.080	.075	.936	.350	.313	3.196
S25	102	.093	100	-1.095	.274	.239	4.178
S26	033	.073	035	453	.651	.326	3.066
S27	.018	.064	.022	.285	.776	.340	2.943
S28	085	.114	067	744	.458	.248	4.039
S29	.163	.129	.128	1.267	.206	.195	5.122
S30	.013	.127	.010	.105	.916	.202	4.950
S31	081	.133	063	611	.542	.188	5.320
S32	058	.150	044	388	.698	.154	6.480
S33	.224	.154	.168	1.457	.146	.149	6.712
S34	103	.120	079	857	.392	.236	4.239
S35	.092	.108	.071	.854	.394	.286	3.493
S36	141	.104	100	-1.348	.178	.358	2.795
S37	.171	.117	.156	1.459	.145	.174	5.755
S38	075	.121	068	617	.538	.166	6.038
S39	105	.115	088	907	.365	.213	4.705
S40	.003	.140	.003	.023	.982	.131	7.637
S41	018	.168	016	109	.913	.096	10.398
S42	.351	.160	.307	2.191	.029	.101	9.867
S43	043	.106	037	407	.685	.240	4.175
S44	060	.040	089	-1.497	.135	.561	1.783
S45	230	.139	203	-1.656	.099	.133	7.537
S46	.169	.143	.145	1.183	.238	.133	7.524
SME class	.184	.085	.107	2.156	.032	.806	1.241

a. Dependent Variable: Y3

Coefficients^a

		Unstand		Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.980	.670		1.462	.145		
	S1	.197	.099	.147	1.986	.048	.367	2.726
	S2	.045	.112	.033	.402	.688	.301	3.321
	S3	.024	.084	.021	.283	.777	.351	2.847
	S4	.037	.111	.024	.330	.742	.379	2.640
	S5	078	.101	064	777	.438	.296	3.378
	S6	021	.094	018	222	.824	.317	3.151
	S7	.055	.091	.043	.606	.545	.396	2.523
	S8	.072	.066	.093	1.093	.275	.277	3.614
	S9	007	.071	009	101	.919	.256	3.913
	S10	.030	.057	.041	.534	.594	.340	2.939
	S11	.003	.049	.003	.056	.955	.544	1.838
	S12	.013	.053	.015	.236	.814	.476	2.102
	S13	105	.074	098	-1.425	.155	.428	2.339
	S14	.207	.115	.150	1.794	.074	.285	3.508
	S15	.179	.102	.137	1.750	.081	.325	3.074
	S16	203	.092	184	-2.219	.027	.292	3.424
	S17	016	.097	013	170	.865	.335	2.987
	S18	.015	.073	.015	.202	.840	.372	2.686
	S19	135	.044	198	-3.100	.002	.493	2.030
	S20	.046	.088	.038	.524	.601	.385	2.600
	S21	.080	.088	.060	.900	.369	.445	2.248
	S22	035	.060	043	592	.554	.383	2.610
	S23	.040	.051	.046	.790	.430	.590	1.695
	S24	.071	.081	.070	.874	.383	.313	3.196
	S25	088	.094	086	937	.349	.239	4.178
	S26	049	.074	052	669	.504	.326	3.066
	S27	.059	.065	.070	.905	.366	.340	2.943
	S28	114	.116	089	984	.326	.248	4.039
	S29	.137	.131	.106	1.045	.297	.195	5.122
	S30	.062	.129	.048	.481	.631	.202	4.950
	S31	003	.135	002	020	.984	.188	5.320
	S32	063	.153	047	416	.678	.154	6.480
	S33	.258	.156	.191	1.650	.100	.149	6.712
	S34	132	.122	100	-1.084	.279	.236	4.239
	S35	.036	.110	.027	.325	.746	.286	3.493
	S36	143	.106	101	-1.352	.177	.358	2.795

s	37	.104	.119	.094	.872	.384	.174	5.755
s	38	102	.123	091	830	.407	.166	6.038
s	39	069	.117	057	585	.559	.213	4.705
s	40	.075	.142	.065	.529	.597	.131	7.637
s	41	133	.170	112	779	.437	.096	10.398
s	42	.335	.163	.290	2.060	.040	.101	9.867
s	43	.070	.107	.060	.651	.515	.240	4.175
s	344	020	.041	029	493	.623	.561	1.783
s	45	095	.141	082	671	.503	.133	7.537
s	46	.002	.145	.002	.014	.989	.133	7.524
s	ME class	.171	.087	.099	1.975	.049	.806	1.241

Coefficientsa

		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.926	.671		1.380	.168		
	S1	.327	.099	.241	3.294	.001	.367	2.726
	S2	033	.112	024	293	.770	.301	3.321
	S3	006	.084	005	067	.947	.351	2.847
	S4	.024	.111	.015	.211	.833	.379	2.640
	S5	102	.101	082	-1.010	.313	.296	3.378
	S6	.051	.094	.042	.538	.591	.317	3.151
	S7	.122	.091	.095	1.346	.179	.396	2.523
	S8	042	.066	055	647	.518	.277	3.614
	S9	.040	.071	.050	.569	.570	.256	3.913
	S10	.098	.057	.131	1.723	.086	.340	2.939
	S11	006	.049	007	115	.909	.544	1.838
	S12	002	.053	003	043	.966	.476	2.102
	S13	052	.074	048	707	.480	.428	2.339
	S14	.073	.115	.053	.632	.528	.285	3.508
	S15	.200	.102	.153	1.961	.051	.325	3.074
	S16	124	.092	111	-1.356	.176	.292	3.424
	S17	050	.097	040	519	.604	.335	2.987
	S18	.072	.073	.072	.995	.320	.372	2.686
	S19	137	.044	199	-3.147	.002	.493	2.030
	S20	.007	.088	.006	.083	.934	.385	2.600
	S21	.071	.088	.053	.803	.422	.445	2.248
	S22	011	.060	013	178	.858	.383	2.610
	S23	.000	.051	.000	003	.998	.590	1.695

S24	.076	.081	.074	.934	.351	.313	3.196
S25	069	.094	067	735	.463	.239	4.178
S26	038	.074	040	511	.610	.326	3.066
S27	.008	.065	.009	.118	.906	.340	2.943
S28	083	.116	064	714	.476	.248	4.039
S29	.254	.131	.195	1.942	.053	.195	5.122
S30	033	.129	026	260	.795	.202	4.950
S31	031	.135	023	227	.820	.188	5.320
S32	.018	.153	.013	.118	.906	.154	6.480
S33	.246	.156	.181	1.574	.117	.149	6.712
S34	176	.122	132	-1.443	.150	.236	4.239
S35	028	.110	021	257	.797	.286	3.493
S36	088	.106	061	829	.408	.358	2.795
S37	.043	.119	.039	.364	.716	.174	5.755
S38	075	.123	066	607	.544	.166	6.038
S39	125	.117	103	-1.069	.286	.213	4.705
S40	.048	.142	.042	.339	.734	.131	7.637
S41	077	.170	065	453	.651	.096	10.398
S42	.281	.163	.240	1.723	.086	.101	9.867
S43	.025	.108	.021	.231	.817	.240	4.175
S44	035	.041	050	850	.396	.561	1.783
S45	099	.141	085	700	.484	.133	7.537
S46	.038	.145	.032	.266	.791	.133	7.524
SME class	.202	.087	.115	2.324	.021	.806	1.241

		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	032	.679		048	.962		
	S1	.188	.100	.136	1.872	.062	.367	2.726
	S2	005	.113	003	041	.967	.301	3.321
	S3	.033	.085	.029	.384	.701	.351	2.847
	S4	.059	.113	.038	.525	.600	.379	2.640
	S5	.025	.102	.020	.249	.804	.296	3.378
	S6	051	.095	042	537	.591	.317	3.151
	S7	.093	.092	.071	1.014	.311	.396	2.523
	S8	.021	.066	.026	.316	.752	.277	3.614
	S9	055	.072	067	768	.443	.256	3.913
	S10	.114	.058	.149	1.975	.049	.340	2.939

S11	.017	.049	.020	.336	.737	.544	1.838
S12	.016	.054	.019	.298	.766	.476	2.102
S13	025	.075	022	334	.739	.428	2.339
S14	.034	.117	.024	.289	.773	.285	3.508
S15	.144	.103	.107	1.388	.166	.325	3.074
S16	190	.093	167	-2.049	.041	.292	3.424
S17	.082	.098	.063	.834	.405	.335	2.987
S18	003	.074	003	046	.963	.372	2.686
S19	135	.044	192	-3.065	.002	.493	2.030
S20	.084	.089	.067	.947	.345	.385	2.600
S21	.095	.090	.070	1.056	.292	.445	2.248
S22	056	.061	066	924	.356	.383	2.610
S23	.060	.051	.067	1.170	.243	.590	1.695
S24	.121	.082	.116	1.473	.142	.313	3.196
S25	134	.096	126	-1.399	.163	.239	4.178
S26	024	.075	024	315	.753	.326	3.066
S27	.122	.066	.140	1.855	.065	.340	2.943
S28	172	.117	129	-1.462	.145	.248	4.039
S29	.211	.133	.158	1.589	.113	.195	5.122
S30	060	.131	045	461	.645	.202	4.950
S31	.000	.136	.000	001	.999	.188	5.320
S32	.027	.155	.020	.176	.860	.154	6.480
S33	.102	.158	.073	.641	.522	.149	6.712
S34	054	.124	040	438	.662	.236	4.239
S35	020	.111	014	176	.860	.286	3.493
S36	083	.107	057	777	.438	.358	2.795
S37	.181	.121	.158	1.495	.136	.174	5.755
S38	.033	.125	.029	.268	.789	.166	6.038
S39	178	.119	143	-1.500	.135	.213	4.705
S40	118	.144	100	820	.413	.131	7.637
S41	.101	.172	.083	.587	.557	.096	10.398
S42	.278	.165	.233	1.684	.093	.101	9.867
S43	082	.109	067	750	.454	.240	4.175
S44	.026	.042	.037	.626	.532	.561	1.783
S45	.021	.143	.018	.146	.884	.133	7.537
S46	.006	.147	.005	.042	.966	.133	7.524
SME class	.242	.088	.135	2.758	.006	.806	1.241

a. Dependent Variable: Y6

				Coefficients				
		Unstand	ardized	Standardized				
		Coeffic	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	097	.677		143	.886		
	S1	.193	.100	.139	1.928	.055	.367	2.726
	S2	.049	.113	.035	.435	.664	.301	3.321
	S3	.030	.085	.026	.351	.726	.351	2.847
	S4	.043	.112	.027	.379	.705	.379	2.640
	S5	.051	.102	.040	.505	.614	.296	3.378
	S6	055	.095	045	583	.560	.317	3.151
	S7	.109	.091	.082	1.190	.235	.396	2.523
	S8	008	.066	010	125	.900	.277	3.614
	S9	032	.072	038	441	.659	.256	3.913
	S10	.085	.058	.110	1.474	.142	.340	2.939
	S11	.029	.049	.035	.595	.552	.544	1.838
	S12	.041	.054	.048	.755	.451	.476	2.102
	S13	031	.075	028	417	.677	.428	2.339
	S14	.057	.116	.040	.487	.627	.285	3.508
	S15	.128	.103	.095	1.246	.214	.325	3.074
	S16	184	.093	160	-1.989	.048	.292	3.424
	S17	.067	.098	.051	.681	.496	.335	2.987
	S18	.030	.073	.030	.415	.679	.372	2.686
	S19	134	.044	189	-3.045	.003	.493	2.030
	S20	.061	.089	.048	.683	.495	.385	2.600
	S21	.086	.089	.063	.963	.336	.445	2.248
	S22	075	.061	087	-1.236	.217	.383	2.610
	S23	.071	.051	.079	1.387	.166	.590	1.695
	S24	.137	.082	.131	1.675	.095	.313	3.196
	S25	113	.095	106	-1.189	.235	.239	4.178
	S26	035	.075	036	471	.638	.326	3.066
	S27	.113	.066	.130	1.733	.084	.340	2.943
	S28	190	.117	142	-1.624	.105	.248	4.039
	S29	.157	.132	.118	1.191	.234	.195	5.122
	S30	.088	.130	.065	.672	.502	.202	4.950
	S31	046	.136	034	335	.738	.188	5.320
	S32	040	.154	029	263	.793	.154	6.480
	S33	.244	.158	.175	1.547	.123	.149	6.712
	S34	186	.123	135	-1.506	.133	.236	4.239
	S35	.021	.111	.016	.193	.847	.286	3.493
	S36	113	.107	077	-1.058	.291	.358	2.795
	S37	.141	.120	.123	1.172	.242	.174	5.755

S38	.002	.124	.002	.019	.985	.166	6.038
S39	193	.118	154	-1.631	.104	.213	4.705
S40	024	.143	020	164	.870	.131	7.637
S41	.090	.172	.074	.524	.601	.096	10.398
S42	.318	.164	.265	1.931	.054	.101	9.867
S43	116	.109	095	-1.070	.285	.240	4.175
S44	.005	.041	.007	.117	.907	.561	1.783
S45	114	.142	096	801	.424	.133	7.537
S46	.101	.146	.083	.691	.490	.133	7.524
SME class	.217	.088	.121	2.482	.014	.806	1.241

		Unstand		Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	2.581	.565		4.572	.000		
	S1	.235	.084	.198	2.817	.005	.367	2.726
	S2	082	.094	068	874	.383	.301	3.321
	S3	.020	.071	.020	.275	.783	.351	2.847
	S4	086	.094	064	922	.357	.379	2.640
	S5	040	.085	037	476	.634	.296	3.378
	S6	.004	.079	.003	.045	.964	.317	3.151
	S7	.082	.076	.073	1.078	.282	.396	2.523
	S8	017	.055	025	304	.762	.277	3.614
	S9	150	.060	212	-2.518	.012	.256	3.913
	S10	.028	.048	.043	.586	.559	.340	2.939
	S11	129	.041	181	-3.148	.002	.544	1.838
	S12	.023	.045	.031	.508	.611	.476	2.102
	S13	071	.062	074	-1.140	.255	.428	2.339
	S14	.188	.097	.154	1.939	.053	.285	3.508
	S15	055	.086	048	644	.520	.325	3.074
	S16	042	.077	043	545	.586	.292	3.424
	S17	103	.082	093	-1.266	.206	.335	2.987
	S18	.005	.061	.006	.081	.935	.372	2.686
	S19	118	.037	194	-3.213	.001	.493	2.030
	S20	.136	.074	.126	1.835	.067	.385	2.600
	S21	.090	.074	.077	1.208	.228	.445	2.248
	S22	050	.051	067	980	.328	.383	2.610
	S23	.071	.043	.092	1.671	.096	.590	1.695
	S24	001	.068	001	013	.990	.313	3.196
	S25	100	.079	110	-1.265	.207	.239	4.178

S26	.022	.062	.026	.347	.729	.326	3.066
S27	.149	.055	.198	2.721	.007	.340	2.943
S28	.145	.098	.126	1.480	.140	.248	4.039
S29	.046	.110	.040	.416	.677	.195	5.122
S30	006	.109	005	053	.957	.202	4.950
S31	033	.113	028	290	.772	.188	5.320
S32	.005	.129	.004	.036	.971	.154	6.480
S33	099	.132	082	749	.454	.149	6.712
S34	104	.103	088	-1.011	.313	.236	4.239
S35	.202	.092	.174	2.191	.029	.286	3.493
S36	.126	.089	.100	1.415	.158	.358	2.795
S37	050	.100	051	501	.617	.174	5.755
S38	074	.104	074	711	.477	.166	6.038
S39	.194	.099	.181	1.963	.051	.213	4.705
S40	018	.119	018	154	.878	.131	7.637
S41	.123	.143	.117	.856	.392	.096	10.398
S42	.017	.137	.017	.126	.900	.101	9.867
S43	017	.091	017	193	.847	.240	4.175
S44	039	.035	065	-1.143	.254	.561	1.783
S45	068	.119	067	571	.568	.133	7.537
S46	.005	.122	.005	.044	.965	.133	7.524
SME class	.003	.073	.002	.047	.963	.806	1.241

		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Mode	<u> </u>	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.425	.600		2.376	.018		
	S1	.236	.089	.184	2.658	.008	.367	2.726
	S2	.101	.100	.077	1.009	.314	.301	3.321
	S3	.064	.076	.060	.852	.395	.351	2.847
	S4	213	.099	146	-2.146	.033	.379	2.640
	S5	067	.090	057	743	.458	.296	3.378
	S6	.051	.084	.046	.611	.541	.317	3.151
	S7	.052	.081	.043	.647	.518	.396	2.523
	S8	.006	.059	.008	.103	.918	.277	3.614
	S9	157	.063	206	-2.485	.013	.256	3.913
	S10	.107	.051	.150	2.088	.038	.340	2.939
	S11	068	.044	088	-1.551	.122	.544	1.838
	S12	.029	.048	.037	.605	.546	.476	2.102
	S13	038	.066	037	578	.564	.428	2.339

	ı						
S14	055	.103	042	532	.595	.285	3.508
S15	.119	.091	.096	1.305	.193	.325	3.074
S16	027	.082	026	335	.738	.292	3.424
S17	085	.087	071	976	.330	.335	2.987
S18	107	.065	114	-1.650	.100	.372	2.686
S19	099	.039	153	-2.555	.011	.493	2.030
S20	.182	.079	.157	2.316	.021	.385	2.600
S21	.083	.079	.066	1.056	.292	.445	2.248
S22	070	.054	089	-1.306	.193	.383	2.610
S23	.034	.045	.041	.742	.459	.590	1.695
S24	.021	.072	.022	.289	.773	.313	3.196
S25	020	.084	021	240	.811	.239	4.178
S26	021	.066	023	314	.754	.326	3.066
S27	.110	.058	.136	1.888	.060	.340	2.943
S28	.133	.104	.108	1.282	.201	.248	4.039
S29	.002	.117	.002	.020	.984	.195	5.122
S30	059	.115	048	512	.609	.202	4.950
S31	.127	.120	.102	1.057	.291	.188	5.320
S32	154	.137	121	-1.129	.260	.154	6.480
S33	034	.140	027	245	.806	.149	6.712
S34	103	.109	081	938	.349	.236	4.239
S35	.112	.098	.089	1.137	.257	.286	3.493
S36	.107	.095	.079	1.130	.259	.358	2.795
S37	068	.107	064	635	.526	.174	5.755
S38	.049	.110	.046	.442	.659	.166	6.038
S39	.176	.105	.153	1.675	.095	.213	4.705
S40	.023	.127	.021	.180	.857	.131	7.637
S41	014	.152	012	090	.929	.096	10.398
S42	.163	.146	.148	1.121	.263	.101	9.867
S43	056	.096	050	582	.561	.240	4.175
S44	037	.037	057	-1.020	.308	.561	1.783
S45	162	.126	149	-1.289	.198	.133	7.537
S46	.170	.130	.151	1.308	.192	.133	7.524
SME class	.118	.078	.071	1.515	.131	.806	1.241

a. Dependent Variable: Y9

				Coefficients	I	1		1
		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	2.245	.622		3.609	.000		
	S1	.145	.092	.116	1.572	.117	.367	2.726
	S2	.170	.104	.133	1.640	.102	.301	3.321
	S3	087	.078	084	-1.114	.266	.351	2.847
	S4	248	.103	175	-2.405	.017	.379	2.640
	S5	116	.093	102	-1.243	.215	.296	3.378
	S6	.087	.087	.079	1.002	.317	.317	3.151
	S7	.131	.084	.110	1.555	.121	.396	2.523
	S8	087	.061	121	-1.428	.154	.277	3.614
	S9	087	.066	117	-1.325	.186	.256	3.913
	S10	.108	.053	.156	2.038	.042	.340	2.939
	S11	010	.045	013	212	.833	.544	1.838
	S12	.025	.049	.033	.502	.616	.476	2.102
	S13	.041	.069	.041	.602	.548	.428	2.339
	S14	.147	.107	.115	1.376	.170	.285	3.508
	S15	.051	.095	.043	.543	.587	.325	3.074
	S16	062	.085	060	730	.466	.292	3.424
	S17	086	.090	074	953	.341	.335	2.987
	S18	041	.067	044	602	.548	.372	2.686
	S19	097	.040	153	-2.402	.017	.493	2.030
	S20	.149	.081	.132	1.830	.068	.385	2.600
	S21	025	.082	020	302	.763	.445	2.248
	S22	033	.056	043	594	.553	.383	2.610
	S23	.003	.047	.003	.056	.955	.590	1.695
	S24	024	.075	026	324	.746	.313	3.196
	S25	074	.088	077	848	.397	.239	4.178
	S26	003	.069	004	051	.960	.326	3.066
	S27	.075	.060	.096	1.253	.211	.340	2.943
	S28	.209	.108	.174	1.942	.053	.248	4.039
	S29	.038	.121	.032	.315	.753	.195	5.122
	S30	.022	.120	.018	.180	.857	.202	4.950
	S31	.172	.125	.141	1.373	.171	.188	5.320
	S32	274	.142	220	-1.938	.053	.154	6.480
	S33	.208	.145	.165	1.430	.154	.149	6.712
	S34	254	.113	206	-2.240	.026	.236	4.239
	S35	.088	.102	.072	.868	.386	.286	3.493
	S36	.128	.098	.097	1.305	.193	.358	2.795
	S37	.093	.111	.090	.837	.403	.174	5.755

S38	055	.114	053	482	.630	.166	6.038
S39	.031	.109	.028	.286	.775	.213	4.705
S40	014	.132	013	106	.916	.131	7.637
S41	.279	.158	.254	1.767	.078	.096	10.398
S42	092	.151	086	610	.542	.101	9.867
S43	056	.100	051	561	.575	.240	4.175
S44	.006	.038	.010	.163	.871	.561	1.783
S45	087	.131	082	666	.506	.133	7.537
S46	002	.134	002	015	.988	.133	7.524
SME class	079	.080	049	979	.328	.806	1.241

		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model	T	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.632	.554		2.947	.003		
	S1	.172	.082	.144	2.095	.037	.367	2.726
	S2	009	.092	007	093	.926	.301	3.321
	S3	.024	.070	.025	.350	.726	.351	2.847
	S4	150	.092	110	-1.630	.104	.379	2.640
	S5	034	.083	031	404	.686	.296	3.378
	S6	036	.078	035	468	.640	.317	3.151
	S7	.098	.075	.087	1.314	.190	.396	2.523
	S8	.028	.054	.041	.515	.607	.277	3.614
	S9	088	.058	123	-1.502	.134	.256	3.913
	S10	.081	.047	.123	1.727	.085	.340	2.939
	S11	028	.040	040	704	.482	.544	1.838
	S12	.030	.044	.041	.679	.498	.476	2.102
	S13	035	.061	037	576	.565	.428	2.339
	S14	.107	.095	.087	1.120	.264	.285	3.508
	S15	033	.084	028	391	.696	.325	3.074
	S16	070	.076	072	930	.353	.292	3.424
	S17	057	.080	051	709	.479	.335	2.987
	S18	011	.060	013	186	.853	.372	2.686
	S19	106	.036	174	-2.944	.003	.493	2.030
	S20	.135	.073	.125	1.864	.063	.385	2.600
	S21	.042	.073	.036	.571	.568	.445	2.248
	S22	079	.050	107	-1.592	.112	.383	2.610
	S23	.011	.042	.014	.261	.795	.590	1.695
	S24	.049	.067	.055	.738	.461	.313	3.196
	S25	089	.078	097	-1.137	.256	.239	4.178

S26	003	.061	003	048	.962	.326	3.066
S27	.148	.054	.197	2.762	.006	.340	2.943
S28	.064	.096	.056	.667	.505	.248	4.039
S29	.089	.108	.078	.826	.409	.195	5.122
S30	.114	.106	.099	1.074	.284	.202	4.950
S31	.053	.111	.046	.479	.633	.188	5.320
S32	.059	.126	.050	.472	.637	.154	6.480
S33	028	.129	023	218	.828	.149	6.712
S34	193	.101	164	-1.914	.057	.236	4.239
S35	.167	.091	.144	1.848	.065	.286	3.493
S36	.113	.088	.090	1.296	.196	.358	2.795
S37	.044	.099	.045	.449	.654	.174	5.755
S38	095	.102	095	929	.354	.166	6.038
S39	014	.097	013	141	.888	.213	4.705
S40	118	.117	116	-1.009	.314	.131	7.637
S41	.161	.141	.153	1.145	.253	.096	10.398
S42	.152	.134	.148	1.132	.258	.101	9.867
S43	081	.089	077	912	.362	.240	4.175
S44	019	.034	031	552	.582	.561	1.783
S45	085	.116	083	732	.465	.133	7.537
S46	.077	.120	.073	.644	.520	.133	7.524
SME class	.046	.072	.030	.647	.518	.806	1.241

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.736	.533		3.259	.001		
	S1	.096	.079	.088	1.222	.223	.367	2.726
	S2	.024	.089	.021	.267	.790	.301	3.321
	S3	139	.067	153	-2.069	.039	.351	2.847
	S4	.030	.088	.024	.340	.734	.379	2.640
	S5	.055	.080	.055	.686	.493	.296	3.378
	S6	.093	.075	.096	1.243	.215	.317	3.151
	S7	.037	.072	.035	.507	.612	.396	2.523
	S8	010	.052	016	197	.844	.277	3.614
	S9	125	.056	192	-2.222	.027	.256	3.913
	S10	.114	.045	.188	2.503	.013	.340	2.939
	S11	034	.039	051	868	.386	.544	1.838
	S12	.006	.042	.008	.131	.896	.476	2.102

S13	.020	.059	.023	.337	.736	.428	2.339
S14	.053	.092	.048	.583	.561	.285	3.508
S15	.063	.081	.060	.781	.435	.325	3.074
S16	.076	.073	.085	1.047	.296	.292	3.424
S17	050	.077	049	651	.516	.335	2.987
S18	107	.058	133	-1.856	.064	.372	2.686
S19	.020	.035	.037	.586	.558	.493	2.030
S20	.092	.070	.093	1.318	.188	.385	2.600
S21	.022	.070	.021	.313	.754	.445	2.248
S22	052	.048	077	-1.090	.276	.383	2.610
S23	036	.040	051	896	.371	.590	1.695
S24	.036	.064	.043	.554	.580	.313	3.196
S25	084	.075	101	-1.124	.262	.239	4.178
S26	.126	.059	.164	2.143	.033	.326	3.066
S27	051	.052	074	988	.324	.340	2.943
S28	.174	.092	.166	1.889	.060	.248	4.039
S29	030	.104	028	286	.775	.195	5.122
S30	.096	.102	.091	.933	.352	.202	4.950
S31	.021	.107	.019	.192	.848	.188	5.320
S32	062	.121	057	509	.611	.154	6.480
S33	045	.124	041	365	.715	.149	6.712
S34	127	.097	118	-1.311	.191	.236	4.239
S35	007	.087	007	082	.935	.286	3.493
S36	.227	.084	.198	2.702	.007	.358	2.795
S37	004	.095	004	039	.969	.174	5.755
S38	006	.098	006	059	.953	.166	6.038
S39	083	.093	085	893	.373	.213	4.705
S40	010	.113	011	088	.930	.131	7.637
S41	.218	.135	.227	1.611	.108	.096	10.398
S42	.016	.129	.017	.121	.904	.101	9.867
S43	015	.085	015	170	.865	.240	4.175
S44	035	.033	063	-1.081	.281	.561	1.783
S45	026	.112	028	232	.817	.133	7.537
S46	.021	.115	.022	.184	.854	.133	7.524
SME class	.068	.069	.048	.988	.324	.806	1.241

a. Dependent Variable: Y12

		Unstand		Standardized				
		Coeffi		Coefficients			Collinearity	Statistics
Madal		В				C:~		
Model 1	(Canatant)		Std. Error	Beta	t	Sig.	Tolerance	VIF
'	(Constant) S1	1.885	.530	066	3.557	.000	267	2.726
	S2	.073	.078	.066	.929	.353	.367	2.726
	S3	.063	.067	.056	.708	.479	.301	3.321
	S4	139 .044	.087	151 .035	-2.087 .495	.038 .621	.351	2.847
	S5	.139	.080					2.640
	S6	.059		.138	1.751	.081	.296	3.378
	S7	.039	.074		.792	.429	.317	3.151
	S8		.072	.080	1.176	.241	.396	2.523
	S9	071	.052	112	-1.364	.173	.277	3.614
		142	.056	215	-2.530	.012		3.913
	S10 S11	.135	.045	.220	2.983	.003	.340	2.939
		043	.038	066	-1.126	.261	.544	1.838
	S12	.013	.042	.020	.319	.750	.476	2.102
	S13	.007	.058	.008	.124	.901	.428	2.339
	S14	.059	.091	.052	.650	.516	.285	3.508
	S15	.091	.081	.085	1.122	.263	.325	3.074
	S16	.024	.072	.027	.335	.738	.292	3.424
	S17	.011	.077	.011	.142	.887	.335	2.987
	S18	029	.057	036	505	.614	.372	2.686
	S19	008	.034	013	219	.827	.493	2.030
	S20	.172	.069	.171	2.473	.014	.385	2.600
	S21	080	.070	074	-1.144	.253	.445	2.248
	S22	127	.047	185	-2.669	.008	.383	2.610
	S23	012	.040	017	302	.763	.590	1.695
	S24	.071	.064	.085	1.106	.269	.313	3.196
	S25	124	.075	146	-1.660	.098	.239	4.178
	S26	.099	.058	.127	1.692	.092	.326	3.066
	S27 S28	.022	.051	.032	.437	.662	.340	2.943
	S28 S29	.172		.162	1.873	.062	.248	4.039
	S29 S30	024	.103	022	228	.820	.195	5.122
	S30 S31	023	.102	021	224	.823	.202	4.950
	S31	.032	.106 .121	.030	.298	.766	.188	5.320
				076	696	.487	.154	6.480
	S33 S34	118	.124	106	952 603	.342	.149	6.712
	S34 S35	058		053	603	.547	.236	4.239
	S35 S36	051 180	.087	047	587 2.145	.558	.286	3.493
		.180		.154	2.145	.033	.358	2.795
	S37	042	.094	046	449	.653	.174	5.755

;	S38	007	.097	008	075	.940	.166	6.038
<u> </u>	S39	031	.093	031	337	.736	.213	4.705
:	S40	.134	.112	.142	1.195	.233	.131	7.637
:	S41	.177	.135	.182	1.314	.190	.096	10.398
:	S42	.060	.129	.063	.464	.643	.101	9.867
:	S43	071	.085	074	839	.402	.240	4.175
:	S44	003	.032	005	094	.925	.561	1.783
:	S45	044	.111	046	393	.695	.133	7.537
;	S46	.019	.114	.020	.168	.866	.133	7.524
,	SME class	.011	.069	.008	.163	.870	.806	1.241

		Unstand	lardized	Standardized				
		Coeffi	cients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.371	.568		2.414	.016		
	S1	.046	.084	.038	.546	.586	.367	2.726
	S2	.099	.095	.080	1.043	.298	.301	3.321
	S3	.083	.071	.083	1.163	.246	.351	2.847
	S4	106	.094	077	-1.126	.261	.379	2.640
	S5	.057	.085	.052	.663	.508	.296	3.378
	S6	047	.080	044	590	.556	.317	3.151
	S7	.042	.077	.037	.548	.584	.396	2.523
	S8	.008	.055	.011	.141	.888	.277	3.614
	S9	078	.060	109	-1.303	.193	.256	3.913
	S10	.074	.048	.111	1.536	.126	.340	2.939
	S11	013	.041	018	307	.759	.544	1.838
	S12	.009	.045	.012	.202	.840	.476	2.102
	S13	054	.063	056	869	.385	.428	2.339
	S14	.063	.098	.051	.644	.520	.285	3.508
	S15	.070	.086	.060	.808	.419	.325	3.074
	S16	.041	.078	.041	.523	.602	.292	3.424
	S17	.028	.082	.025	.342	.732	.335	2.987
	S18	.029	.062	.033	.473	.637	.372	2.686
	S19	015	.037	024	398	.691	.493	2.030
	S20	.149	.074	.137	2.006	.046	.385	2.600
	S21	.035	.075	.029	.462	.644	.445	2.248
	S22	044	.051	059	861	.390	.383	2.610
	S23	012	.043	015	277	.782	.590	1.695

S24	.029	.069	.032	.421	.674	.313	3.196
S25	081	.080	088	-1.011	.313	.239	4.178
S26	025	.063	030	404	.687	.326	3.066
S27	.062	.055	.082	1.127	.261	.340	2.943
S28	.153	.098	.133	1.559	.120	.248	4.039
S29	039	.111	034	356	.722	.195	5.122
S30	.016	.109	.014	.150	.881	.202	4.950
S31	.112	.114	.096	.984	.326	.188	5.320
S32	.122	.129	.102	.943	.346	.154	6.480
S33	129	.132	107	972	.332	.149	6.712
S34	215	.103	181	-2.080	.038	.236	4.239
S35	.148	.093	.126	1.594	.112	.286	3.493
S36	.008	.090	.006	.089	.929	.358	2.795
S37	007	.101	007	070	.944	.174	5.755
S38	058	.104	058	555	.580	.166	6.038
S39	.008	.099	.007	.079	.937	.213	4.705
S40	021	.120	020	174	.862	.131	7.637
S41	.372	.144	.352	2.580	.010	.096	10.398
S42	093	.138	090	674	.501	.101	9.867
S43	.000	.091	.000	001	.999	.240	4.175
S44	078	.035	127	-2.253	.025	.561	1.783
S45	105	.119	102	879	.380	.133	7.537
S46	.006	.123	.006	.051	.959	.133	7.524
SME class	.008	.073	.005	.110	.912	.806	1.241

a. Dependent Variable: Y14

Appendix C Harman's Test

			Total Variance Ex	xplained		
		Initial Eigenvalu	es	Extractio	n Sums of Square	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	23.070	37.819	37.819	22.515	36.910	36.910
2	5.121	8.395	46.215			
3	3.495	5.730	51.945			
4	2.931	4.805	56.750			
5	2.367	3.881	60.631			
6	2.086	3.419	64.050			
7	1.800	2.951	67.001			
8	1.481	2.428	69.429			
9	1.299	2.130	71.559			
10	1.118	1.833	73.392			
11	.998	1.635	75.027			
12	.893	1.463	76.490			
13	.842	1.380	77.870			
14	.800	1.312	79.181			
15	.727	1.191	80.373			
16	.645	1.058	81.431			
17	.596	.977	82.408			
18	.551	.903	83.311			
19	.537	.881	84.191			
20	.522	.855	85.047			
21	.490	.804	85.851			
22	.483	.792	86.643			
23	.458	.750	87.393			
24	.425	.697	88.090			
25	.401	.658	88.748			
26	.381	.625	89.373			
27	.379	.621	89.994			
28	.363	.594	90.588			
29	.355	.582	91.170			
30	.336	.551	91.721			
31	.314	.514	92.235			
32	.300	.492	92.727			
33	.293	.480	93.207			
34	.278	.455	93.663			
35	.269	.440	94.103			
36	.249	.408	94.511			

37	.229	.375	94.886		
38	.226	.370	95.256		
39	.217	.355	95.611		
40	.208	.341	95.953		
41	.201	.329	96.282		
42	.188	.309	96.591		
43	.180	.296	96.887		
44	.173	.283	97.170		
45	.156	.255	97.425		
46	.149	.245	97.670		
47	.147	.241	97.911		
48	.144	.237	98.147		
49	.137	.225	98.372		
50	.120	.197	98.569		
51	.114	.187	98.756		
52	.111	.182	98.938		
53	.104	.170	99.108		
54	.096	.157	99.265		
55	.095	.155	99.420		
56	.080	.132	99.552		
57	.073	.119	99.671		
58	.062	.102	99.773		
59	.055	.091	99.864		
60	.050	.082	99.946		
61	.033	.054	100.000		
Extractio	n Method: Principa	I Axis Factoring.			

Appendix D

Original CFA Model

Scalar Estimates (Group number 1 - Default model)

Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	P	Label
CI	<	Growth	.181	.033	5.450	***	
SI	<	Growth	.068	.035	1.940	.052	
II	<	Growth	.138	.030	4.666	***	
CI	<	Com	.349	.047	7.492	***	
SI	<	Com	.438	.052	8.452	***	
II	<	Com	.422	.045	9.358	***	
Y7	<	Growth	1.000				
Y6	<	Growth	.982	.034	29.222	***	
Y5	<	Growth	.975	.032	30.390	***	
Y4	<	Growth	1.000	.029	34.198	***	
Y3	<	Growth	.997	.028	35.143	***	
Y2	<	Growth	.972	.028	34.764	***	
Y1	<	Growth	.941	.031	30.112	***	
S6	<	CI	1.000				
S5	<	CI	.974	.065	15.069	***	
S4	<	CI	.686	.052	13.295	***	
S3	<	CI	1.010	.069	14.531	***	
S2	<	CI	.857	.056	15.259	***	
S1	<	CI	.829	.058	14.281	***	
S7	<	CI	.804	.062	12.925	***	
S8	<	CI	.864	.109	7.952	***	
S9	<	CI	.724	.105	6.859	***	
S10	<	CI	.607	.114	5.328	***	
S12	<	CI	.577	.103	5.607	***	
S46	<	II	1.000				
S45	<	II	1.004	.069	14.491	***	
S44	<	II	610	.124	-4.929	***	
S43	<	II	.994	.067	14.733	***	
S42	<	II	1.128	.069	16.404	***	
S40	<	II	1.141	.068	16.858	***	
S39	<	II	1.021	.065	15.681	***	
S38	<	II	1.097	.070	15.636	***	
S37	<	II	1.133	.070	16.098	***	
S36	<	II	.786	.056	13.933	***	
S35	<	II	.926	.060	15.442	***	
S34	<	II	.934	.059	15.775	***	

			Estimate	S.E.	C.R.	P	Label
S33	<	II	.967	.058	16.806	***	
S32	<	II	.999	.058	17.348	***	
S31	<	II	1.014	.059	17.110	***	
S30	<	II	.988	.060	16.417	***	
S29	<	II	.960	.061	15.837	***	
S28	<	II	.930	.061	15.155	***	
S16	<	SI	1.000				
S15	<	SI	.770	.056	13.852	***	
S14	<	SI	.698	.053	13.154	***	
S13	<	SI	.851	.068	12.543	***	
S17	<	SI	.815	.058	14.160	***	
S18	<	SI	1.061	.073	14.623	***	
S20	<	SI	.771	.060	12.823	***	
S21	<	SI	.640	.056	11.383	***	
S22	<	SI	1.029	.089	11.526	***	
S23	<	SI	470	.089	-5.270	***	
S24	<	SI	.931	.072	12.869	***	
S25	<	SI	1.007	.070	14.406	***	
S26	<	SI	1.042	.077	13.530	***	
S27	<	SI	1.130	.087	13.061	***	
Y8	<	Com	1.000				
Y9	<	Com	1.094	.055	19.877	***	
Y10	<	Com	.997	.056	17.889	***	
Y11	<	Com	1.072	.050	21.443	***	
Y12	<	Com	.846	.049	17.154	***	
Y13	<	Com	.857	.050	17.211	***	
Y14	<	Com	1.001	.053	19.060	***	
SMEclass	<	Growth	.120	.031	3.890	***	
SMEclass	<	Com	014	.041	344	.731	

Standardized Regression Weights: (Group number 1 - Default model)

			Estimate
CI	<	Growth	.274
SI	<	Growth	.094
II	<	Growth	.215
CI	<	Com	.407
SI	<	Com	.470
II	<	Com	.508
Y7	<	Growth	.911
Y6	<	Growth	.900
Y5	<	Growth	.913
Y4	<	Growth	.947
Y3	<	Growth	.955

			Estimate
Y2	<	Growth	.952
Y1	<	Growth	.910
S6	<	CI	.769
S5	<	CI	.754
S4	<	CI	.675
S3	<	CI	.730
S2	<	CI	.762
S1	<	CI	.719
S7	<	CI	.658
S8	<	CI	.419
S9	<	CI	.363
S10	<	CI	.284
S12	<	CI	.299
S46	<	II	.739
S45	<	II	.720
S44	<	II	255
S43	<	II	.731
S42	<	II	.806
S40	<	II	.826
S39	<	II	.774
S38	<	II	.772
S37	<	II	.792
S36	<	II	.695
S35	<	II	.763
S34	<	II	.778
S33	<	II	.823
S32	<	II	.847
S31	<	II	.837
S30	<	II	.806
S29	<	II	.781
S28	<	II	.750
S16	<	SI	.764
S15	<	SI	.692
S14	<	SI	.661
S13	<	SI	.633
S17	<	SI	.705
S18	<	SI	.725
S20	<	SI	.646
S21	<	SI	.580
S22	<	SI	.586
S23	<	SI	278
S24	<	SI	.648
S25	<	SI	.716
S26	<	SI	.677

			Estimate
S27	<	SI	.656
Y8	<	Com	.825
Y9	<	Com	.840
Y10	<	Com	.782
Y11	<	Com	.881
Y12	<	Com	.760
Y13	<	Com	.761
Y14	<	Com	.817
SMEclass	<	Growth	.197
SMEclass	<	Com	018

Intercepts: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
Y7	5.190	.067	77.839	***	
Y6	5.234	.066	78.995	***	
Y5	5.127	.065	78.999	***	
Y4	5.208	.064	81.249	***	
Y3	5.190	.063	81.793	***	
Y2	5.226	.062	84.213	***	
Y1	5.314	.063	84.629	***	
S6	5.722	.052	109.446	***	
S5	5.626	.052	108.368	***	
S4	6.195	.041	151.659	***	
S3	5.481	.056	98.641	***	
S2	5.943	.045	131.631	***	
S1	5.992	.046	129.415	***	
S7	5.842	.049	118.961	***	
S8	4.790	.083	57.771	***	
S9	4.748	.080	59.316	***	
S10	4.475	.086	52.090	***	
S12	4.623	.078	59.565	***	
S46	5.577	.053	105.736	***	
S45	5.540	.054	101.946	***	
S44	3.662	.093	39.235	***	
S43	5.636	.053	106.426	***	
S42	5.626	.055	103.116	***	
S40	5.636	.054	104.719	***	
S39	5.748	.051	111.817	***	
S38	5.652	.055	102.084	***	
S37	5.649	.056	101.356	***	
S36	5.969	.044	135.444	***	
S35	5.808	.047	122.776	***	
S34	5.919	.047	126.605	***	

	Estimate	S.E.	C.R.	P	Label
S33	5.938	.046	129.774	***	
S32	5.899	.046	128.332	***	
S31	5.891	.047	124.707	***	
S30	5.795	.048	121.428	***	
S29	5.805	.048	121.104	***	
S28	5.779	.048	119.620	***	
S16	5.517	.057	96.373	***	
S15	5.813	.049	119.397	***	
S14	5.919	.046	128.069	***	
S13	5.543	.059	94.221	***	
S17	5.891	.051	116.451	***	
S18	5.514	.064	86.215	***	
S20	5.774	.052	110.562	***	
S21	5.992	.048	123.977	***	
S22	4.831	.077	62.922	***	
S23	3.294	.074	44.473	***	
S24	5.229	.063	83.187	***	
S25	5.384	.062	87.545	***	
S26	5.249	.067	78.022	***	
S27	4.935	.075	65.552	***	
SMEclass	1.787	.037	48.428	***	
Y8	5.270	.057	92.693	***	
Y9	5.091	.061	83.328	***	
Y10	5.210	.060	87.190	***	
Y11	5.174	.057	90.677	***	
Y12	5.616	.052	107.543	***	
Y13	5.704	.053	108.017	***	
Y14	5.325	.057	92.639	***	

Variances: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
e55	1.417	.122	11.629	***	
e64	.845	.087	9.752	***	
e2	.471	.056	8.400	***	
e1	.406	.049	8.255	***	
e3	.566	.067	8.457	***	
e10	.290	.023	12.425	***	
e9	.319	.025	12.603	***	
e8	.270	.022	12.393	***	
e7	.162	.014	11.276	***	
e6	.137	.013	10.816	***	
e5	.139	.013	11.014	***	
e4	.261	.021	12.447	***	

	Estimate	S.E.	C.R.	P	Label
e16	.430	.037	11.561	***	
e15	.446	.038	11.761	***	
e14	.349	.028	12.532	***	
e13	.553	.046	12.042	***	
e12	.328	.028	11.648	***	
e11	.397	.033	12.156	***	
e17	.525	.042	12.648	***	
e18	2.177	.161	13.521	***	
e19	2.136	.157	13.617	***	
e20	2.606	.190	13.718	***	
e21	2.107	.154	13.702	***	
e54	.485	.037	13.263	***	
e53	.546	.041	13.324	***	
e52	3.129	.226	13.822	***	
e51	.501	.038	13.289	***	
e50	.401	.031	12.941	***	
e48	.354	.028	12.797	***	
e47	.407	.031	13.119	***	
e46	.476	.036	13.128	***	
e45	.444	.034	13.023	***	
e44	.386	.029	13.396	***	
e43	.359	.027	13.167	***	
e42	.331	.025	13.099	***	
e41	.259	.020	12.815	***	
e40	.229	.018	12.601	***	
e39	.257	.020	12.702	***	
e38	.306	.024	12.937	***	
e37	.345	.026	13.085	***	
e36	.392	.030	13.220	***	
e25	.524	.043	12.134	***	
e24	.475	.037	12.732	***	
e23	.462	.036	12.908	***	
e22	.796	.061	13.038	***	
e26	.494	.039	12.644	***	
e27	.744	.060	12.495	***	
e28	.611	.047	12.981	***	
e29	.596	.045	13.237	***	
e30	1.486	.112	13.215	***	
e31	1.943	.141	13.754	***	
e32	.880	.068	12.971	***	
e33	.708	.056	12.567	***	
e34	.941	.073	12.817	***	
e35	1.239	.096	12.929	***	
e56	.502	.036	13.844	***	

	Estimate	S.E.	C.R.	P	Label
e57	.397	.033	11.879	***	
e58	.423	.036	11.634	***	
e59	.532	.043	12.396	***	
e60	.279	.026	10.615	***	
e61	.443	.035	12.595	***	
e62	.450	.036	12.581	***	
e63	.422	.035	11.997	***	

Model Fit Summary

CMIN

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	181	7438.536	1588	.000	4.684
Saturated model	1769	.000	0		
Independence model	116	22683.957	1653	.000	13.723

Baseline Comparisons

Model	NFI	RFI	IFI	TLI	CFI
Model	Delta1	rho1	Delta2	rho2	СГІ
Default model	.672	.659	.723	.710	.722
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.961	.646	.693
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	5850.536	5585.769	6122.062
Saturated model	.000	.000	.000
Independence model	21030.957	20547.824	21520.530

FMIN

Model	FMIN	F0	LO 90	HI 90
Default model	19.371	15.236	14.546	15.943
Saturated model	.000	.000	.000	.000

Model	FMIN	F0	LO 90	HI 90
Independence model	59.073	54.768	53.510	56.043

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.098	.096	.100	.000
Independence model	.182	.180	.184	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	7800.536	7866.253		
Saturated model	3538.000	4180.283		
Independence model	22915.957	22958.074		

ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	20.314	19.624	21.021	20.485
Saturated model	9.214	9.214	9.214	10.886
Independence model	59.677	58.419	60.952	59.787

HOELTER

Model	HOELTER	HOELTER
Model	.05	.01
Default model	87	89
Independence model	30	31

Modified CFA Model

Scalar Estimates (Group number 1 - Default model)

Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	P	Label
CI	<	Growth	.168	.043	3.950	***	par_38
SI	<	Growth	.098	.046	2.142	.032	par_39
II	<	Growth	.125	.039	3.196	.001	par_41
CI	<	Com	.324	.057	5.712	***	par_42
SI	<	Com	.330	.062	5.328	***	par_43
II	<	Com	.410	.055	7.488	***	par_45
Y7	<	Growth	1.000				

			Estimate	S.E.	C.R.	P	Label
Y6	<	Growth	.978	.018	55.845	***	par_1
Y5	<	Growth	.990	.035	28.436	***	par 2
Y4	<	Growth	1.027	.032	32.307	***	par_3
Y3	<	Growth	1.025	.032	31.980	***	par 4
Y2	<	Growth	.996	.032	32.175	***	par 5
Y1	<	Growth	.972	.033	29.222	***	par_5
S6	<	CI	1.000	.033	<i>LJ.LLL</i>		pai_0
S5	<	CI	.972	.058	16.816	***	par 7
S4	<	CI	.741	.053	14.081	***	par_8
S3	<	CI	.932	.065	14.348	***	par 9
S2	<	CI	.899	.061	14.660	***	par 10
S1	<	CI	.848	.064	13.262	***	par 11
S7	<	CI	.908	.064	14.257	***	par 12
S46	<	II	1.000	.004	14.237		Pai_12
S45	<	II	.982	.032	30.857	***	par_13
S43	<	II	.994	.067	14.827	***	par 14
S42	<	II	1.125	.066	16.983	***	par 15
S40	<	II	1.121	.057	19.724	***	par 16
S39	<	II	1.010	.064	15.717	***	par_17
S38	<	II	1.074	.070	15.427	***	par 18
S37	<	II	1.100	.070	15.807	***	par 19
S35	<	II	.954	.059	16.209	***	par 20
S34	<	II	.944	.058	16.197	***	par_20
S33	<	II	.939	.057	16.408	***	par 22
S32	<	II	.984	.057	17.223	***	par_23
S31	<	II	.988	.059	16.806	***	par_24
S30	<	II	.982	.061	16.031	***	par 25
S29	<	II	.961	.060	15.968	***	par 26
S28	<	II	.939	.060	15.584	***	par 27
S16	<	SI	1.000				1 _ '
S15	<	SI	.894	.064	13.886	***	par_28
S14	<	SI	.900	.066	13.532	***	par 29
S17	<	SI	.954	.066	14.437	***	par 30
S18	<	SI	1.041	.064	16.291	***	par 31
Y8	<	Com	1.000				• _
Y9	<	Com	1.093	.044	24.832	***	par 32
Y10	<	Com	.975	.057	16.993	***	par 33
Y11	<	Com	1.071	.051	20.809	***	par 34
Y12	<	Com	.825	.054	15.372	***	par 35
Y13	<	Com	.841	.056	15.023	***	par 36
Y14	<	Com	.976	.053	18.337	***	par 37
SMEclass	<	Growth	.122	.040	3.028	.002	par 40
SMEclass	<	Com	018	.052	356	.722	par 44
S36	<	II	.812	.055	14.678	***	par_46

Standardized Regression Weights: (Group number 1 - Default model)

			Estimate
CI	<	Growth	.241
SI	<	Growth	.137
II	<	Growth	.182
CI	<	Com	.370
SI	<	Com	.366
II	<	Com	.477
Y7	<	Growth	.894
Y6	<	Growth	.880
Y5	<	Growth	.909
Y4	<	Growth	.953
Y3	<	Growth	.960
Y2	<	Growth	.954
Y1	<	Growth	.920
S6	<	CI	.767
S5	<	CI	.770
S4	<	CI	.734
S3	<	CI	.677
S2	<	CI	.799
S1	<	CI	.738
S7	<	CI	.750
S46	<	II	.751
S45	<	II	.731
S43	<	II	.739
S42	<	II	.829
S40	<	II	.829
S39	<	II	.774
S38	<	II	.761
S37	<	II	.778
S35	<	II	.795
S34	<	II	.796
S33	<	II	.805
S32	<	II	.839
S31	<	II	.822
S30	<	II	.810
S29	<	II	.785
S28	<	II	.768
S16	<	SI	.738
S15	<	SI	.776
S14	<	SI	.825
S17	<	SI	.798
S18	<	SI	.688
Y8	<	Com	.833

			Estimate
Y9	<	Com	.848
Y10	<	Com	.775
Y11	<	Com	.890
Y12	<	Com	.750
Y13	<	Com	.765
Y14	<	Com	.806
SMEclass	<	Growth	.198
SMEclass	<	Com	024
S36	<	II	.730

Intercepts: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
Y7	5.195	.067	78.024	***	par_123
Y6	5.240	.066	79.183	***	par_124
Y5	5.133	.065	79.167	***	par_125
Y4	5.211	.064	81.185	***	par_126
Y3	5.193	.064	81.726	***	par_127
Y2	5.229	.062	84.156	***	par_128
Y1	5.318	.063	84.589	***	par_129
S6	5.724	.054	105.371	***	par_130
S5	5.638	.053	107.158	***	par_131
S4	6.193	.042	147.359	***	par_132
S3	5.482	.057	95.563	***	par_133
S2	5.943	.047	126.860	***	par_134
S1	5.992	.048	125.184	***	par_135
S7	5.839	.050	115.782	***	par_136
S46	5.573	.054	102.619	***	par_137
S45	5.536	.055	101.112	***	par_138
S43	5.633	.055	102.712	***	par_139
S42	5.638	.055	101.922	***	par_140
S40	5.633	.055	102.171	***	par_141
S39	5.745	.053	107.926	***	par_142
S38	5.648	.057	98.256	***	par_143
S37	5.646	.058	97.908	***	par_144
S35	5.810	.049	118.730	***	par_145
S34	5.917	.048	122.363	***	par_146
S33	5.940	.048	124.996	***	par_147
S32	5.901	.048	123.467	***	par_148
S31	5.893	.049	120.353	***	par_149
S30	5.797	.049	117.252	***	par_150

	Estimate	S.E.	C.R.	P	Label
S29	5.807	.050	116.442	***	par_151
S28	5.784	.050	116.131	***	par_152
S16	5.513	.058	94.974	***	par_153
S15	5.812	.049	117.778	***	par_154
S14	5.917	.047	126.684	***	par_155
S17	5.888	.051	114.955	***	par_156
S18	5.510	.065	85.038	***	par_157
SMEclass	1.786	.037	48.385	***	par_158
Y8	5.271	.057	92.471	***	par_159
Y9	5.091	.061	83.116	***	par_160
Y10	5.206	.060	87.151	***	par_161
Y11	5.172	.057	90.467	***	par_162
Y12	5.612	.052	107.451	***	par_163
Y13	5.701	.052	109.188	***	par_164
Y14	5.328	.058	92.625	***	par_165
S36	5.971	.045	131.715	***	par_166

Covariances: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	P	Label
Com	<>	Growth	.651	.072	9.027	***	par_118
e1	<>	e3	.303	.038	8.032	***	par_47
e2	<>	e1	.295	.035	8.414	***	par_48
e2	<>	e3	.292	.039	7.512	***	par_122
e62	<>	e63	.074	.026	2.848	.004	par_49
e61	<>	e62	.254	.034	7.517	***	par_50
e60	<>	e62	044	.021	-2.116	.034	par_51
e59	<>	e60	.073	.028	2.571	.010	par_52
e58	<>	e62	081	.031	-2.617	.009	par_53
e58	<>	e61	098	.029	-3.370	***	par_54
e57	<>	e62	082	.029	-2.783	.005	par_55
e57	<>	e58	.135	.032	4.278	***	par_56
e57	<>	e61	073	.028	-2.658	.008	par_57
e23	<>	e27	164	.034	-4.800	***	par_58
e24	<>	e23	.029	.029	1.005	.315	par_59
e25	<>	e27	.282	.051	5.548	***	par_60
e25	<>	e23	097	.030	-3.259	.001	par_61
e37	<>	e36	.193	.024	8.002	***	par_62
e45	<>	e44	008	.016	483	.629	par_63
e38	<>	e37	.178	.022	8.100	***	par_64
e39	<>	e37	.032	.013	2.504	.012	par_65
e39	<>	e38	.081	.016	5.048	***	par_66
e40	<>	e39	.133	.019	7.118	***	par_67
e41	<>	e38	.025	.013	2.000	.046	par_68

			Estimate	S.E.	C.R.	P	Label
e41	<>	e39	.147	.020	7.406	***	par_69
e41	<>	e40	.168	.020	8.426	***	par 70
e42	<>	e39	.068	.018	3.766	***	par 71
e42	<>	e40	.070	.018	3.884	***	par 72
e42	<>	e41	.146	.021	7.034	***	par 73
e43	<>	e44	.087	.020	4.248	***	par 74
e46	<>	e45	.326	.035	9.394	***	par 75
e47	<>	e45	.239	.030	8.008	***	par 76
e47	<>	e46	.282	.032	8.856	***	par 77
e50	<>	e39	016	.011	-1.439	.150	par 78
e50	<>	e40	020	.010	-1.989	.047	par 79
e50	<>	e42	029	.012	-2.310	.021	par 80
e50	<>	e48	.198	.024	8.239	***	par 81
e51	<>	e37	060	.017	-3.613	***	par_82
e51	<>	e38	032	.016	-1.976	.048	par_83
e51	<>	e41	006	.013	509	.611	par_84
e51	<>	e43	054	.018	-2.943	.003	par_85
e51	<>	e48	.154	.026	5.973	***	par_86
e51	<>	e50	.215	.029	7.315	***	par_87
e53	<>	e40	007	.010	664	.507	par_88
e53	<>	e41	.001	.010	.073	.942	par_89
e53	<>	e48	.151	.023	6.642	***	par_90
e54	<>	e38	026	.010	-2.505	.012	par_91
e38	<>	e44	.028	.014	1.919	.055	par_92
e40	<>	e44	.018	.012	1.494	.135	par_93
e40	<>	e38	.025	.013	1.841	.066	par_94
e54	<>	e53	.398	.035	11.420	***	par_95
e12	<>	e11	.129	.026	4.919	***	par_96
e13	<>	e17	084	.032	-2.581	.010	par_97
e14	<>	e13	024	.025	937	.349	par_98
e15	<>	e17	120	.028	-4.288	***	par_99
e15	<>	e11	083	.026	-3.133	.002	par_100
e15	<>	e12	067	.025	-2.691	.007	par_101
e15	<>	e13	.226	.044	5.176	***	par_102
e16	<>	e11	068	.027	-2.512	.012	par_103
e16	<>	e12	053	.025	-2.128	.033	par_104
e16	<>	e13	.140	.042	3.336	***	par_105
e16	<>	e15	.113	.038	2.973	.003	par_106
e9	<>	e6	024	.013	-1.821	.069	par_107
e10	<>	e5	006	.008	758	.449	par_108
e10	<>	e6	020	.013	-1.484	.138	par_109
e10	<>	e9	.280	.026	10.692	***	par_110
e38	<>	e36	.128	.021	6.147	***	par_111
e48	<>	e45	.044	.014	3.253	.001	par_112

			Estimate	S.E.	C.R.	P	Label
e51	<>	e45	.025	.020	1.261	.207	par_113
e51	<>	e46	060	.019	-3.181	.001	par_114
e7	<>	e4	050	.012	-4.244	***	par_115
e56	<>	e3	.007	.025	.268	.789	par_116
e56	<>	e1	.005	.019	.261	.794	par_117
e54	<>	e48	.113	.020	5.649	***	par_119
e53	<>	e50	.091	.016	5.517	***	par_120
e53	<>	e51	.077	.018	4.246	***	par_121

Correlations: (Group number 1 - Default model)

			Г.: .
<u> </u>		C 41	Estimate
Com	<>	Growth	.601
e1	<>	e3	.641
e2	<>	e1	.682
e2	<>	e3	.577
e62	<>	e63	.169
e61	<>	e62	.570
e60	<>	e62	131
e59	<>	e60	.193
e58	<>	e62	194
e58	<>	e61	227
e57	<>	e62	201
e57	<>	e58	.344
e57	<>	e61	176
e23	<>	e27	345
e24	<>	e23	.092
e25	<>	e27	.399
e25	<>	e23	245
e37	<>	e36	.511
e45	<>	e44	018
e38	<>	e37	.518
e39	<>	e37	.098
e39	<>	e38	.263
e40	<>	e39	.479
e41	<>	e38	.081
e41	<>	e39	.489
e41	<>	e40	.598
e42	<>	e39	.218
e42	<>	e40	.240
e42	<>	e41	.461
e43	<>	e44	.247
e46	<>	e45	.629
e47	<>	e45	.511

			Estimate
e47	<>	e46	.586
e50	<>	e39	049
e50	<>	e40	049
		-	
e50	<>	e42	083
e50	<>	e48	.543
e51	<>	e37	136
e51	<>	e38	078
e51	<>	e41	016
e51	<>	e43	128
e51	<>	e48	.352
e51	<>	e50	.492
e53	<>	e40	018
e53	<>	e41	.002
e53	<>	e48	.342
e54	<>	e38	065
e38	<>	e44	.081
e40	<>	e44	.060
e40	<>	e38	.086
e54	<>	e53	.776
e12	<>	e11	.369
e13	<>	e17	155
e14	<>	e13	051
e15	<>	e17	280
e15	<>	e11	199
e15	<>	e12	185
e15	<>	e13	.416
e16	<>	e11	157
e16	<>	e12	142
e16	<>	e13	.248
e16	<>	e15	.251
e9	<>	e6	114
e10	<>	e5	029
e10	<>	e6	097
e10	<>	e9	.783
e38	<>	e36	.361
e48	<>	e45	.103
e51	<>	e45	.048
e51	<>	e46	114
e7	<>	e4	274
e56	<>	e3	.013
e56	<>	e1	.011
e54	<>	e48	.267
e53	<>	e50	.206
e53	<>	e51	.147

Variances: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
Growth	1.358	.121	11.229	***	par_167
Com	.864	.089	9.682	***	par_168
e2	.464	.058	7.983	***	par_169
e1	.404	.049	8.268	***	par_170
e3	.554	.072	7.664	***	par_171
e10	.340	.028	12.164	***	par_172
e9	.377	.030	12.602	***	par_173
e8	.278	.022	12.598	***	par_174
e7	.145	.014	10.449	***	par_175
e6	.121	.012	10.164	***	par_176
e5	.132	.012	11.060	***	par 177
e4	.231	.020	11.772	***	par 178
e16	.466	.046	10.196	***	par 179
e15	.432	.047	9.096	***	par 180
e14	.312	.026	12.171	***	par 181
e13	.683	.060	11.333	***	par 182
e12	.303	.030	10.161	***	par 183
e11	.400	.036	11.184	***	par 184
e17	.426	.037	11.573	***	par 185
e54	.493	.039	12.772	***	par 186
e53	.534	.040	13.478	***	par 187
e51	.523	.041	12.697	***	par 188
e50	.366	.031	11.689	***	par 189
e48	.365	.029	12.480	***	par 190
e47	.436	.035	12.575	***	par 191
e46	.532	.042	12.661	***	par 192
e45	.503	.040	12.640	***	par 193
e43	.337	.027	12.364	***	par_194
e42	.328	.027	12.196	***	par 195
e41	.304	.025	12.123	***	par 196
e40	.258	.022	11.635	***	par 197
e39	.298	.025	12.000	***	par 198
e38	.322	.026	12.303	***	par 199
e37	.366	.029	12.558	***	par 200
e36	.389	.031	12.593	***	par 201
e25	.587	.055	10.777	***	par 202
e24	.371	.037	10.155	***	par_203
e23	.266	.035	7.581	***	par 204
e26	.364	.035	10.411	***	par 205
e27	.847	.074	11.427	***	par 206
e56	.504	.036	13.827	***	par_200
e57	.381	.037	10.221	***	par 208

	Estimate	S.E.	C.R.	P	Label
e58	.405	.041	9.869	***	par_209
e59	.545	.047	11.652	***	par_210
e60	.261	.029	8.964	***	par_211
e61	.457	.039	11.615	***	par_212
e62	.433	.043	9.978	***	par_213
e63	.445	.038	11.844	***	par_214
e44	.368	.029	12.802	***	par_215

Squared Multiple Correlations: (Group number 1 - Default model)

	Estimate
CI	
SI	.213
II	.365
CI	.301
S36	.533
Y14	.649
Y13	.585
Y12	.562
Y11	.792
Y10	.601
Y9	.719
Y8	.694
SMEclass	.034
S18	.473
S17	.637
S14	.681
S15	.602
S16	.545
S28	.590
S29	.616
S30	.656
S31	.676
S32	.705
S33	.648
S34	.634
S35	.632
S37	.605
S38	.580
S39	.598
S40	.687
S42	.688
S43	.546
S45	.535
S46	.563

	Estimate
S7	.563
S1	.544
S2	.639
S3	.458
S4	.539
S5	.593
S6	.588
Y1	.847
Y2	.910
Y3	.922
Y4	.908
Y5	.827
Y6	.775
Y7	.800

Model Fit Summary

CMIN

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	215	1514.097	819	.000	1.849
Saturated model	1034	.000	0		
Independence model	88	18519.301	946	.000	19.576

Baseline Comparisons

Model	NFI Delta1	RFI rho1	IFI Delta2	TLI rho2	CFI
Default model	.918	.906	.961	.954	.960
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.866	.795	.832
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	695.097	589.633	808.366
Saturated model	.000	.000	.000

Model	NCP	LO 90	HI 90
Independence model	17573.301	17134.575	18018.418

FMIN

Model	FMIN	F0	LO 90	HI 90
Default model	3.953	1.815	1.540	2.111
Saturated model	.000	.000	.000	.000
Independence model	48.353	45.883	44.738	47.045

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.047	.043	.051	.903
Independence model	.220	.217	.223	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	1944.097	2001.346		
Saturated model	2068.000	2343.325		
Independence model	18695.301	18718.733		

ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	5.076	4.801	5.372	5.225
Saturated model	5.399	5.399	5.399	6.118
Independence model	48.813	47.667	49.975	48.874

HOELTER

Model	HOELTER	HOELTER
Model	.05	.01
Default model	225	232
Independence model	22	22

Structural Equation Model

Scalar Estimates (Group number 1 - Default model)

Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	P	Label
II	<	SI	.354	.057	6.246	***	
II	<	CI	.521	.063	8.264	***	
Growth	<	CI	.336	.127	2.646	.008	
Growth	<	SI	075	.109	687	.492	
Growth	<	SMEclass	.161	.072	2.231	.026	
Growth	<	II	.470	.139	3.386	***	
Com	<	CI	.182	.098	1.864	.062	
Com	<	SI	017	.084	207	.836	
Com	<	SMEclass	006	.056	105	.917	
Com	<	II	.561	.110	5.081	***	
Y7	<	Growth	1.000				
Y6	<	Growth	.979	.018	55.334	***	
Y5	<	Growth	.990	.035	28.121	***	
Y4	<	Growth	1.028	.032	32.013	***	
Y3	<	Growth	1.025	.032	31.690	***	
Y2	<	Growth	.996	.031	31.883	***	
Y1	<	Growth	.971	.034	28.835	***	
S6	<	CI	1.000				
S5	<	CI	.972	.058	16.802	***	
S4	<	CI	.742	.053	14.049	***	
S3	<	CI	.935	.065	14.366	***	
S2	<	CI	.900	.061	14.650	***	
S1	<	CI	.850	.064	13.272	***	
S7	<	CI	.911	.064	14.261	***	
S46	<	II	1.000				
S45	<	II	.982	.032	30.873	***	
S43	<	II	.994	.066	14.992	***	
S42	<	II	1.125	.066	17.061	***	
S40	<	II	1.123	.057	19.816	***	
S39	<	II	1.009	.064	15.736	***	
S38	<	II	1.063	.069	15.365	***	
S37	<	II	1.101	.069	15.876	***	
S35	<	II	.954	.059	16.249	***	
S34	<	II	.941	.058	16.175	***	
S33	<	II	.938	.057	16.443	***	
S32	<	II	.983	.057	17.241	***	
S31	<	II	.986	.059	16.820	***	

			Estimate	S.E.	C.R.	P	Label
S30	<	II	.980	.061	16.024	***	
S29	<	II	.961	.060	16.020	***	
S28	<	II	.937	.060	15.589	***	
S16	<	SI	1.000				
S15	<	SI	.894	.064	13.888	***	
S14	<	SI	.900	.066	13.537	***	
S17	<	SI	.956	.066	14.447	***	
S18	<	SI	1.041	.064	16.299	***	
Y8	<	Com	1.000				
Y9	<	Com	1.098	.045	24.661	***	
Y10	<	Com	.971	.058	16.639	***	
Y11	<	Com	1.064	.053	20.142	***	
Y12	<	Com	.842	.055	15.433	***	
Y13	<	Com	.851	.057	14.861	***	
Y14	<	Com	.983	.054	18.208	***	
S36	<	II	.812	.055	14.713	***	

Standardized Regression Weights: (Group number 1 - Default model)

			Estimate
II	<	SI	.372
II	<	CI	.531
Growth	<	CI	.237
Growth	<	SI	055
Growth	<	SMEclass	.101
Growth	<	II	.325
Com	<	CI	.160
Com	<	SI	016
Com	<	SMEclass	005
Com	<	II	.484
Y7	<	Growth	.892
Y6	<	Growth	.879
Y5	<	Growth	.908
Y4	<	Growth	.953
Y3	<	Growth	.960
Y2	<	Growth	.954
Y1	<	Growth	.918
S6	<	CI	.765
S5	<	CI	.768
S4	<	CI	.733
S3	<	CI	.678
S2	<	CI	.798
S1	<	CI	.738
S7	<	CI	.751

			E-4:4-
~ 4.6		**	Estimate
S46	<	II	.751
S45	<	II	.733
S43	<	II	.745
S42	<	II	.831
S40	<	II	.831
S39	<	II	.773
S38	<	II	.758
S37	<	II	.780
S35	<	II	.796
S34	<	II	.794
S33	<	II	.805
S32	<	II	.839
S31	<	II	.822
S30	<	II	.809
S29	<	II	.786
S28	<	II	.767
S16	<	SI	.738
S15	<	SI	.776
S14	<	SI	.825
S17	<	SI	.799
S18	<	SI	.688
Y8	<	Com	.831
Y9	<	Com	.849
Y10	<	Com	.770
Y11	<	Com	.881
Y12	<	Com	.764
Y13	<	Com	.771
Y14	<	Com	.810
S36	<	II	.731

Intercepts: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
SMEclass	1.786	.037	48.385	***	
Y7	4.908	.145	33.888	***	
Y6	4.958	.142	34.863	***	
Y5	4.848	.143	33.933	***	
Y4	4.915	.147	33.469	***	
Y3	4.898	.146	33.490	***	
Y2	4.943	.142	34.738	***	
Y1	5.038	.140	36.050	***	
S6	5.724	.054	105.375	***	
S5	5.638	.053	107.169	***	
S4	6.193	.042	147.359	***	

	Estimate	S.E.	C.R.	P	Label
S3	5.482	.057	95.559	***	
S2	5.943	.047	126.860	***	
S1	5.992	.048	125.184	***	
S7	5.839	.050	115.782	***	
S46	5.573	.054	102.576	***	
S45	5.536	.055	101.142	***	
S43	5.633	.054	103.402	***	
S42	5.638	.055	102.109	***	
S40	5.633	.055	102.144	***	
S39	5.745	.053	107.889	***	
S38	5.648	.057	98.683	***	
S37	5.646	.058	97.964	***	
S35	5.810	.049	118.683	***	
S34	5.917	.048	122.276	***	
S33	5.940	.048	124.965	***	
S32	5.901	.048	123.450	***	
S31	5.893	.049	120.331	***	
S30	5.797	.049	117.210	***	
S29	5.807	.050	116.398	***	
S28	5.784	.050	116.091	***	
S16	5.513	.058	94.938	***	
S15	5.813	.049	117.729	***	
S14	5.917	.047	126.624	***	
S17	5.888	.051	114.904	***	
S18	5.510	.065	85.010	***	
Y8	5.281	.115	46.018	***	
Y9	5.103	.125	40.703	***	
Y10	5.216	.114	45.875	***	
Y11	5.183	.120	43.051	***	
Y12	5.621	.099	56.885	***	
Y13	5.709	.100	57.314	***	
Y14	5.338	.114	47.003	***	
S36	5.971	.045	131.695	***	

Covariances: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
SI <> CI	.464	.055	8.468	***	
e62 <> e63	.074	.027	2.732	.006	
e61 <> e62	.240	.034	7.040	***	
e60 <> e62	041	.022	-1.873	.061	
e59 <> e60	.088	.030	2.984	.003	
e58 <> e62	089	.032	-2.736	.006	
e58 <> e61	113	.029	-3.856	***	

		Estimate	S.E.	C.R.	P	Label
e57 <>	e62	085	.031	-2.787	.005	
e57 <>	e58	.136	.033	4.135	***	
e57 <>	e61	084	.028	-3.008	.003	
e23 <>	e27	163	.034	-4.782	***	
e24 <>	e23	.030	.029	1.025	.305	
e25 <>	e27	.282	.051	5.563	***	
e25 <>	e23	096	.030	-3.233	.001	
e37 <>	e36	.193	.024	8.013	***	
e45 <>	e44	012	.016	768	.442	
e38 <>	e37	.178	.022	8.118	***	
e39 <>	e37	.032	.013	2.501	.012	
e39 <>	e38	.082	.016	5.098	***	
e40 <>	e39	.134	.019	7.174	***	
e41 <>	e38	.026	.013	2.027	.043	
e41 <>	e39	.147	.020	7.429	***	
e41 <>	e40	.168	.020	8.448	***	
e42 <>	e39	.070	.018	3.847	***	
e42 <>	e40	.072	.018	3.984	***	
e42 <>	e41	.147	.021	7.109	***	
e43 <>	e44	.086	.020	4.201	***	
e46 <>	e45	.320	.034	9.456	***	
e47 <>	e45	.240	.030	8.030	***	
e47 <>	e46	.283	.031	9.077	***	
e50 <>	e39	019	.011	-1.676	.094	
e50 <>	e40	024	.010	-2.351	.019	
e50 <>	e42	024	.012	-1.946	.052	
e50 <>	e48	.191	.024	8.111	***	
e51 <>	e37	059	.016	-3.603	***	
e51 <>	e38	031	.016	-1.887	.059	
e51 <>	e41	007	.013	543	.587	
e51 <>	e43	053	.018	-2.907	.004	
e51 <>	e48	.146	.025	5.759	***	
e51 <>	e50	.198	.029	6.891	***	
e53 <>	e40	007	.010	681	.496	
e53 <>	e41	.000	.010	.045	.964	
e53 <>	e48	.152	.023	6.682	***	
e54 <>	e38	027	.010	-2.556	.011	
e38 <>	e44	.028	.015	1.954	.051	
e40 <>	e44	.019	.012	1.535	.125	
e40 <>	e38	.026	.013	1.900	.057	
e54 <>	e53	.396	.035	11.413	***	
e12 <>	e11	.129	.026	4.940	***	
e13 <>	e17	085	.032	-2.631	.009	
e14 <>	e13	025	.025	986	.324	

		Estimate	S.E.	C.R.	P	Label
e15 <>	e17	119	.028	-4.266	***	
e15 <>	e11	082	.026	-3.107	.002	
e15 <>	e12	065	.025	-2.610	.009	
e15 <>	e13	.227	.044	5.205	***	
e16 <>	e11	067	.027	-2.487	.013	
e16 <>	e12	052	.025	-2.056	.040	
e16 <>	e13	.140	.042	3.351	***	
e16 <>	e15	.116	.038	3.061	.002	
e9 <>	e6	025	.013	-1.850	.064	
e10 <>	e5	006	.008	719	.472	
e10 <>	e6	020	.013	-1.490	.136	
e10 <>	e9	.281	.026	10.684	***	
e38 <>	e36	.129	.021	6.196	***	
e48 <>	e45	.028	.014	2.008	.045	
e51 <>	e45	.022	.020	1.141	.254	
e51 <>	e46	031	.020	-1.529	.126	
e7 <>	e4	049	.012	-4.146	***	
e50 <>	e46	.055	.015	3.765	***	
e54 <>	e48	.113	.020	5.605	***	
e53 <>	e50	.089	.016	5.548	***	
e53 <>	e51	.077	.018	4.243	***	

Correlations: (Group number 1 - Default model)

		Estimate
SI <>	CI	.680
e62 <>	e63	.171
e61 <>	e62	.557
e60 <>	e62	118
e59 <>	e60	.223
e58 <>	e62	215
e58 <>	e61	271
e57 <>	e62	211
e57 <>	e58	.346
e57 <>	e61	206
e23 <>	e27	343
e24 <>	e23	.094
e25 <>	e27	.400
e25 <>	e23	243
e37 <>	e36	.511
e45 <>	e44	029
e38 <>	e37	.518
e39 <>	e37	.097
e39 <>	e38	.265

			Estimate
e40	<>	e39	.481
e41	<>	e38	.082
e41	<>	e39	.489
e41	<>	e40	.598
e42		e39	.222
	<>		.222
e42	<>	e40	
e42 e43		e41	.464 .244
	<>	e44 e45	
e46	<>	_	.621
e47	<>	e45	.515
e47	<>	e46	.586
e50	<>	e39	057
e50 e50	<>	e40	078
	<>	e42	069
e50	<>	e48	.529 139
e51	<>	e37	
e51	<>	e38 e41	076 018
e51	<>	e43	018
e51	<>	e48	.343
e51	<>	e50	.463
e51	<>	e40	019
e53	<>	e41	.001
e53	<>	e48	.347
e54	<>	e38	067
e38	<>	e44	.082
	<>	e44	.062
e40	<>	e38	.088
e54	<>	e53	.775
e12	<>	e11	.369
e13		e17	158
e14	<>	e13	054
e15	<>	e17	277
e15		e11	196
e15	<>	e12	178
e15	<>	e13	.417
e16	<>	e11	155
e16	<>	e12	136
e16	<>	e13	.248
e16	<>	e15	.256
e9	<>	e6	117
e10	<>	e5	027
e10	<>	e6	098
e10	<>	e9	.783
•			

		Estimate
e38 <>	e36	.363
e48 <>	e45	.067
e51 <>	e45	.045
e51 <>	e46	059
e7 <>	e4	268
e50 <>	e46	.126
e54 <>	e48	.267
e53 <>	e50	.204
e53 <>	e51	.148

Variances: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
CI	.662	.080	8.241	***	
SI	.703	.090	7.827	***	
e56	.522	.038	13.838	***	
e64	.199	.027	7.486	***	
e2	.998	.091	11.011	***	
e1	.545	.059	9.192	***	
e10	.341	.028	12.150	***	
e9	.378	.030	12.588	***	
e8	.280	.022	12.598	***	
e7	.144	.014	10.401	***	
e6	.120	.012	10.089	***	
e5	.132	.012	11.029	***	
e4	.234	.020	11.788	***	
e16	.468	.046	10.253	***	
e15	.435	.047	9.179	***	
e14	.313	.026	12.177	***	
e13	.682	.060	11.343	***	
e12	.305	.030	10.215	***	
e11	.399	.036	11.202	***	
e17	.424	.037	11.564	***	
e54	.492	.039	12.780	***	
e53	.532	.039	13.482	***	
e51	.506	.040	12.561	***	
e50	.361	.031	11.824	***	
e48	.360	.029	12.375	***	
e47	.436	.035	12.597	***	
e46	.534	.041	12.932	***	
e45	.499	.040	12.566	***	
e43	.337	.027	12.369	***	

	Estimate	S.E.	C.R.	P	Label
e42	.331	.027	12.239	***	
e41	.304	.025	12.146	***	
e40	.259	.022	11.685	***	
e39	.299	.025	12.044	***	
e38	.324	.026	12.343	***	
e37	.364	.029	12.562	***	
e36	.391	.031	12.611	***	
e25	.589	.055	10.792	***	
e24	.372	.037	10.161	***	
e23	.267	.035	7.609	***	
e26	.363	.035	10.396	***	
e27	.848	.074	11.435	***	
e57	.385	.039	9.961	***	
e58	.401	.042	9.498	***	
e59	.556	.048	11.685	***	
e60	.280	.031	9.148	***	
e61	.436	.039	11.208	***	
e62	.425	.045	9.420	***	
e63	.437	.037	11.705	***	
e44	.367	.029	12.798	***	

Squared Multiple Correlations: (Group number 1 - Default model)

	Estimate
SMEclass	.000
II	.689
Com	.366
Growth	.252
S36	.534
Y14	.655
Y13	.595
Y12	.583
Y11	.777
Y10	.593
Y9	.721
Y8	.691
S18	.473
S17	.639
S14	.681
S15	.602
S16	.544
S28	.589
S29	.618
S30	.655

	ı
	Estimate
S31	.675
S32	.704
S33	.649
S34	.630
S35	.633
S37	.608
S38	.575
S39	.598
S40	.691
S42	.691
S43	.555
S45	.537
S46	.564
S7	.564
S1	.545
S2	.637
S3	.459
S4	.538
S5	.590
S6	.586
Y1	.843
Y2	.909
Y3	.921
Y4	.908
Y5	.824
Y6	.772
Y7	.796

Model Fit Summary

CMIN

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	213	1577.911	821	.000	1.922
Saturated model	1034	.000	0		
Independence model	88	18519.301	946	.000	19.576

Baseline Comparisons

Model	NFI	RFI	IFI	TLI	CFI
Wiodei	Delta1	rho1	Delta2	rho2	СГІ
Default model	.915	.902	.957	.950	.957
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.868	.794	.830
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	756.911	648.369	873.234
Saturated model	.000	.000	.000
Independence model	17573.301	17134.575	18018.418

FMIN

Model	FMIN	F0	LO 90	HI 90
Default model	4.120	1.976	1.693	2.280
Saturated model	.000	.000	.000	.000
Independence model	48.353	45.883	44.738	47.045

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.049	.045	.053	.660
Independence model	.220	.217	.223	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	2003.911	2060.627		
Saturated model	2068.000	2343.325		
Independence model	18695.301	18718.733		

ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	5.232	4.949	5.536	5.380
Saturated model	5.399	5.399	5.399	6.118
Independence model	48.813	47.667	49.975	48.874

HOELTER

Model	HOELTER .05	HOELTER .01
Default model	216	223
Independence model	22	22