DISCUSSION PAPER SERIES NO. 2023-32

Inclusivity of Factor Flows in a Labor-Surplus Economy: Experience of the Philippines

John Paolo R. Rivera and Tereso S. Tullao Jr.

The PIDS Discussion Paper Series constitutes studies that are preliminary and subject to further revisions. They are being circulated in a limited number of copies only for purposes of soliciting comments and suggestions for further refinements. The studies under the Series are unedited and unreviewed. The views and opinions expressed are those of the author(s) and do not necessarily reflect those of the Institute. Not for quotation without permission from the author(s) and the Institute.

CONTACT US:

Inclusivity of Factor Flows in a Labor-Surplus Economy: Experience of the Philippines

John Paolo R. Rivera Tereso S. Tullao Jr.

PHILIPPINE INSTITUTE FOR DEVELOPMENT STUDIES

December 2023

Abstract

Under the assumption of full employment, we probed the impact of labor emigration on wages, employment, and production in the capital- and labor-intensive sectors of the Philippines, represented by manufacturing and agriculture, respectively. We investigated whether deployment, remittances, and foreign direct investment (FDI) flows are inclusive given the consequential employment opportunities for unemployed resources left behind, specifically unskilled workers that are biased towards the employment of labor and the production of laborintensive goods. Subjecting Philippine data, from 1991 to 2021 to Vector Autoregression (VAR), we generated Orthogonal Impulse-Response Function (IRF) and Forecast Error Variance Decomposition (FEVD) to capture the response of wages, employment, and production in the capital- and labor-intensive sectors on impulses emanating from deployment, remittances, and FDI flows. Empirical results revealed the following key findings: (1) deployment, remittances, and FDI flows are not inclusive because it worsens the situation in the agricultural sector; (2) although deployment and FDI flows increase employment in the manufacturing sector, production does not increase due to limited capital inputs; (3) The capital-intensive sector benefits more from FDI flows than the labor-intensive sector. Despite such results, there are potentials of inclusivity in both sectors provided critical constraints in the labor-sending economy are addressed. Our study contributes to explicating how development strategies that rely on labor emigration and FDI can be recalibrated and made sufficient to achieve inclusive growth. We also augmented literature on the impacts of labor emigration on the sending-economy, particularly the Philippines.

Keywords: agriculture, employment, FDI, labor emigration, manufacturing, production, remittances, wages

Table of Contents

1.	Introduction						
	1.1. Rationale	2					
	1.2. Statement of the Problem						
	1.3. General and Specific Objectives	3					
	1.4. Scope and Limitations	3					
	1.5. Significance of the Study						
2.	Review of Related Literature	5					
	2.1. Impact of Labor Migration on the Receiving-Economy	5					
	2.2. Impact of Labor Emigration on Wages and Production in the Sending-Economy						
	2.3. Impact of FDI on Wages and Production in the Sending-Economy						
	2.4. Research Gap						
3.	Research Design and Methodology	. 10					
	3.1. Conceptual Framework						
	3.2. Research Design and Data Requirements						
	3.2.1. Vector Autoregression						
	3.2.2. Variable Declaration						
	3.2.3. Standard Time Series Procedures						
	3.2.4. VAR Estimation and Post-VAR Analysis						
4.	Results and Discussion						
	4.1. Standard Time Series Analysis Procedures						
	4.2. Empirical Findings						
	4.2.1. VAR Results						
	4.2.2. OIRF and FEVD Results						
	4.3. Key Findings						
5.	Conclusions and Recommendations						
٠.	5.1. Conclusions						
	5.2. Policy Recommendations						
	5.2.1. Complement Labor Emigration with more FDI Flows.						
	5.2.2. Invest in People by Prioritizing Education and Upscaling Skills	45					
	5.2.3. Enhance Assistance Provided to the Agricultural Sector	45					
	5.2.4. Redirect Utilization of Remittances from Consumption to Savings-Investment.	46					
	5.2.5. Recommendations for Future Studies						
6	Acknowledgements						
	Declaration of Ownership						
	Ethical Clearance						
	Bibliography						
10). Appendix	55					
Li	st of Tables						
_							
Ιa	able 1: A-priori Impacts of Labor Emigration and FDIs on Wages, Employment, and	_					
_	Production in the Sending-Economy based on Scholarly Literature						
	able 2: Trends of Variables						
	able 3: Variable Description and Source of Data						
	able 4: A-priori Expectations of Variables of Interest						
	Table 5: Order of Integration of Variables as per the Phillips-Perron Stationarity Test 16						
	Table 6: Summary Results of the Engle-Granger Cointegration Test						
	Table 7: Summary Selection of Optimal Lag Order (p)17						
	able 8: Summary VAR(p) Results for Equation 2						
	able 9: Summary VAR(p) Results for Equation 3						
Ta	able 10: Summary VAR(p) Results for Equation 4	. 23					

Table 11: Summary VAR(p) Results for Equation 5	25
Table 12: Summary of Empirical Results – Capital-Intensive Sector	
Table 13: Summary of Empirical Results – Labor-Intensive Sector	
Table 14: Cross-Comparative Compilation of Empirical Findings	42
List of Figures	
List of Figures	
Figure 1: Literature Map and Research Gap	9
Figure 2: Conceptual Framework	10
Figure 3: Methodological Process	
Figure 4.1: OIRF and FEVD for Equation 2 (Impulse: DEPLYt) – Capital-Intensive	
Figure 4.2: OIRF and FEVD for Equation 2 (Impulse: DEPLYt) – Labor-Intensive	
Figure 5.1: OIRF and FEVD for Equation 3 (Impulse: InREMITt) – Capital-Intensive	
Figure 5.2: OIRF and FEVD for Equation 3 (Impulse: InREMITt) – Labor-Intensive	
Figure 6.1: OIRF and FEVD for Equation 4 (Impulse: InFDIFLt) – Capital-Intensive	
Figure 6.2: OIRF and FEVD for Equation 4 (Impulse: InFDIFLt) – Labor-Intensive	
Figure 7.1: OIRF and FEVD for Equation 4 (Impulse: PMNFGt) – Capital-Intensive	
Figure 7.2: OIRF and FEVD for Equation 4 (Impulse: PAGRIt) – Labor-Intensive	38
List of Appendices Appendix 1: Dataset	55
Appendix 1: Dataset	
Appendix 2.1: Phillips-Perron Stationarity Test	
Appendix 2.2: Engle-Granger Cointegration Test	
Appendix 2.3: Optimal Lag Order Selection	
Appendix 3: VAR(p) Results for Equation 2	
Appendix 3.1: VAR(p) for Capital-Intensive Sector	
Appendix 3.2: VAR(p) for Labor-Intensive Sector	
Appendix 4:VAR(p) Results for Equation 3	
Appendix 4.1: VAR(p) for Capital-Intensive Sector	
Appendix 4.2: VAR(p) for Labor-Intensive Sector	
Appendix 5: VAR(p) Results for Equation 4	
Appendix 5.1: VAR(p) for Capital-Intensive Sector	
Appendix 5. 2: VAR(p) for Labor-Intensive Sector	
Appendix 6: VAR(p) Results for Equation 5	
Appendix 6.1: VAR(p) for Capital-Intensive Sector	
Appendix 6.2: VAR(p) for Labor-Intensive Sector	75
Appendix 7: Stata DO File	76

Inclusivity of Factor Flows in a Labor-Surplus Economy: Experience of the Philippines

John Paolo R. Rivera* and Tereso S. Tullao, Jr.**

1. Introduction

The impacts of immigration on the labor markets of receiving developed economies have been established in the literature (Vargas-Silva & Sumption, 2023; Dumont & Liebig, 2014; Dustmann et al., 2008; Venturini & Villoso, 2004). However, not much has been done on the effects of labor emigration on the labor market of sending developing economies (Murakami et al., 2021; Paul, 2018). For studies probed on such, its impacts are manifested through the wage rate of those left behind (Docquier et al., 2010). Because labor emigration reduces the labor force of the sending-economy, its short-term impact is to increase the wage rate in the sending-economy (Vargas-Silva, 2020; Brown, 2015). This was found to be reasonably true for non-emigrants with substitutable skills with that of emigrants but non-emigrants with different and complementary skills lose (Elsner, 2022, 2015).

Because labor emigration reduces the labor force of the sending-economy, it will result in the sending-economy's production possibilities frontier (PPF) to contract (i.e., shift inwards) (Salvatore, 2019). Holding commodity prices constant, the production of capital- and labor-intensive goods will also contract (Jinkjarak & Naknoi, 2011). Hence, reduced labor force with fixed capital inputs will reduce production despite higher labor productivity (Romer, 1990).

Such contraction in the PPF and decline in the production of capital- and labor-intensive goods in the sending-economy can be mitigated if unemployment is high in the sending-economy (Trehan, 2001). In this case, the sending-economy's PPF will not shift inwards, there is no reduction in the production of labor- and capital-intensive goods, and there is no change in labor productivity. However, the issue of underemployment cannot be ignored (Organisation for Economic Co-operation and Development [OECD], 2017). In the Philippines, Paqueo et al. (2014) argued that it remains to have a large and increasing labor surplus. Historically, the Philippine Overseas Employment Administration (POEA) reported that at least 10 per cent of the economy's population (14% of labor force) are permanent residents, temporary workers, or irregular migrants abroad with at least two million being deployed to various economies, with Middle East, Southeast Asia, United States of America (USA), United Kingdom (UK), Italy, and Canada receiving the highest numbers of Overseas Filipino Workers (OFW¹).

This phenomenon generated cash remittances that augmented the Philippines' foreign currency reserves, enhanced household consumption levels, and stabilized the economy during crises. Consequently, the economy has relied on OFWs' remittances (Rivera, 2013). According to Ochave (2020), the Philippines is one of the largest destinations for remittances from migrant workers. Data from the Bangko Sentral ng Pilipinas (BSP) reported that remittance inflows in

^{*} President and Chief Economist, Oikonomia Advisory & Research, Inc.; OIC Executive Director, Asian Institute of Management

⁻ Dr. Andrew L. Tan Center for Tourism. Email: jprivera.oarinc@gmail.com; jrivera@aim.edu

Professor Emeritus, De La Salle University School of Economics. Email: tereso.tullao@dlsu.edu.ph

¹ Per Republic Act 8042 (Migrant Workers and Overseas Filipinos Act of 1995), migrant worker refers to a person who is to be engaged, is engaged or has been engaged in a remunerated activity in a state of which he or she is not a legal resident.

2022 was at USD 32.54 billion (approximately 10% of Gross Domestic Product [GDP]); and as of September 2023, total remittance inflows already amount to USD 24.49 billion².

As such, there is pressure for wages to remain low so that firms (i.e., micro, small, and medium enterprises [MSMEs]) will be able to absorb the surplus of labor. Until sufficient labor surplus is absorbed, which is signaled by sustained increases in wages of unskilled labor, rising wages is an unlikely engine of poverty reduction for labor without substantial human capital.

In the long-run, labor emigration integrates the impact of an increase in wage rate on the capital-labor ratio (Henderson, 2020) and on commodity prices (Suthaharan & Bleakley, 2022; Fløystad, 1972). Holding interest rates constant, an increase in wage rate will increase factor price ratio (price of labor/price of capital) that will increase commodity price ratio (price of labor-intensive good/price of capital-intensive good) (Cacnio, 2017; Lemos, 2004; Behman, 1969). Rising commodity prices favoring labor-intensive goods will increase the production of labor-intensive goods and reduce production of capital-intensive goods (Jones, 2003).

1.1. Rationale

Integrating both short- and long-run effects, labor emigration may temper the reduction in the production of labor-intensive goods. It may also reinforce the decrease in production of capital-intensive goods. These outcomes are possible under the assumption of full employment.

However, if the sending-economy has unemployed resources, labor emigration will have no effect on factor and commodity prices. Hence, we hypothesize that **labor emigration becomes inclusive since it provides employment opportunities for unemployed laborers left behind in the sending-economy (Hypothesis 1)**. By inclusivity in the labor market, it means *everyone in the labor force population, particularly the vulnerable, marginalized, and disadvantaged people, can participate in quality and paid work* (European Commission, n.d.).

Meanwhile, suppose the inflow of FDIs is directed in the capital-intensive sector. In the short-term, it will increase labor demand given increased capital. This will trigger wage rate to increase that will shift labor from labor-intensive to capital-intensive sector. The shift will expand production in the capital-intensive sector and reduce production in the labor-intensive sector. This is non-inclusive. However, in the long-term, if factor prices are incorporated in commodity prices, the increase in wage rate will reduce the relative price of capital. This will increase the price of labor-intensive goods relative to capital-intensive goods. Given an expanded PPF due to changes in the total amount of available factor inputs, advancements in technology, influx of FDIs, the production of labor-intensive goods may increase and temper the increase in the production of capital-intensive goods (Tomlinson, n.d.). As such, we hypothesize that FDI flows may be inclusive in the long-run since it can give opportunities for unemployed laborers left behind in the sending-economy (Hypothesis 2).

1.2. Statement of the Problem

By inclusivity, opportunities are provided to the unemployed. However, it is biased towards employment of labor rather than capital, and production of labor-intensive goods than capital-intensive goods. Given the impacts of labor emigration and FDI flows on wages, we pose this

 $^{^2 \} For \ updates \ on \ remittance \ figures \ in \ the \ Philippines, see \ \underline{https://www.bsp.gov.ph/SitePages/Statistics/External.aspx?TabId=8}$

research question: Does labor emigration and FDIs have an impact on the production and employment of labor-intensive sectors versus capital-intensive sectors in the Philippines?

Addressing this problem statement will generate two outcomes: (1) hypothesis 1 and hypothesis 2 would be validate; and (2) provide answers to this follow up question: *How can development strategies that rely on labor emigration and FDI be recalibrated and made sufficient to achieve inclusive growth?*

1.3. General and Specific Objectives

In addressing the problem statement, our general objective is to determine if migration and FDIs impact on the wages, employment, and production in the labor-intensive and capital-intensive sectors in the Philippines. The following specific objectives are also set:

- 1. To show the trends in migration flows, FDI flows, wages, employment, and production in the labor- and capital-intensive sectors of the Philippines;
- 2. To estimate the impacts of labor emigration and FDIs in the production and employment in the labor- and capital-intensive sectors in the Philippines;
- 3. To explicate conditions and provide policy implications on how labor emigration and FDIs can effectively lead to inclusive growth.

1.4. Scope and Limitations

Our constructs are measured as follows. We measure labor emigration using deployment and remittances; employment using wages and employment level; and FDIs using flows.

Our study relies on data from the Philippine Statistics Authority (PSA), BSP, and the World Bank (WB). While there are other plausible variables to represent our constructs, we are limited to variables whose data is complete, consistent, and accessible whether open access or under subscription. For instance, production is more appropriately measured by the Value of Production Index (VaPI, 2018=100) or the Volume of Production Index (VoPI, 2018=100) but it is not available for a longer period to warrant time series analysis. Likewise, VaPI and VoPI have been reported using different base years. Thus, an alternative metric that satisfies length, completeness, and consistency is used, specifically value added, which is available at WB.

Because data representing our variables are all time series, a longer period is required to perform time series analysis. However, data is gathered from multiple sources. Thus, we are limited by the consistency of data across sources. For instance, even if PSA has monthly or quarterly data for some variables of interest but BSP and WB only has annual data, the annual data as unit of analysis would prevail. Even if BSP and WB has available time series from 1950 but PSA has 1990 as earliest, the shorter time frame would prevail. Even if WB has 2022 as latest data point and PSA only have until 2021, the less recent year would prevail.

These also limit: (1) the number of variables that can be included in the empirical analysis to conserve degrees of freedom; and (2) the unit of analysis of empirical results (i.e., instead of a more granular unit of time like monthly or quarterly, annual would prevail). Due to limitations in the availability of disaggregated, consistent, and granular data, we assume that the manufacturing sector represents the capital-intensive sector, and the agricultural sector represents the labor-intensive sector.

Furthermore, such constraints limit the sources of inclusivity that can be incorporated in the empirical model. Available data anchors this study on trade liberalization variables. This quantitatively exclude other sources of inclusivity such as wellbeing level, gender inequality, access to digitalization, among others. While these factors are deemed important in explaining inclusivity, measuring them to be included in the empirical model would be challenging. A qualitative research design would best address these facets, which are beyond the scope of our study. Hence, inclusivity, in the context of this study, is anchored on trade liberalization.

1.5. Significance of the Study

While the impacts of labor emigration and FDIs on sending-economies have been discussed in scholarly research, few studies focused on their short- and long-run impacts on employment and production in the labor- and capital-intensive sectors of a developing economy like the Philippines. Hence, our results will augment the discourse by providing perspectives on the economic consequences of labor emigration than of the usual immigration.

Despite the pursuit of steady economic growth, the Philippines has been impaired by the persistence of unemployment and underemployment that compel labor emigration for better compensation (OECD, 2017). This discourse is important for the Philippines given its stature as a major labor-exporting economy (Duan & Lu, 2018; Center for Migrant Advocacy [CMA], 2009) and its dependence on remittances to keep its economy afloat (O'Neil, 2004). Our results can assist policymakers to recalibrate policy regimes not just to promote and regulate remittances but also harness its impacts on inclusivity and FDI inflows.

Addressing our research problem and objectives would facilitate examination and augmentation of empirical evidence on the impact of labor emigration and FDIs on economic growth, both in the short- and long-run, in developing economies like the Philippines (Dinh et al., 2019). Because the Philippines leverage FDIs to generate job opportunities, promoting labor equality and inclusivity, and stimulating economic growth and development (The Manila Times, 2022), it is imperative for policymakers and economic players to find ways to maximize these benefits and sustain the positive impetus. Hence, results will generate policy implications that can recalibrate development strategies using FDIs as a vehicle to promote inclusivity.

According to Mantovani and de Crombrugghe (2022), Southeast Asia is generally characterized as a hotspot for FDIs, with inflows having increased by nine in the past two decades, with more than 50 per cent going to Singapore. In this distribution, it was reported that the Philippines is ranked in the middle of all economies in terms of total FDI inflows. However, the Philippines is harnessing the spillover effects of FDIs than most of its neighboring economies particularly on: (1) job creation from FDIs; (2) environmental sustainability from FDI; and (3) labor equality and knowledge transfer due to the employment practices of foreign enterprises. These reports motivate our study to probe also on the role of FDIs on inclusivity. Attracting more FDIs is just a necessary condition for economic growth. Sufficiency condition requires significant value-added be realized from FDIs. Thus, developmental policies must be reviewed not only to attract more FDIs but to assist sectors that can catalyze inclusivity in the Philippines.

Using the Philippine manufacturing and agricultural sectors as representatives of the economy's capital- and labor-intensive sectors, respectively, results provide empirical evidence on the degree by which labor emigration contributes to inclusivity.

2. Review of Related Literature

In addressing our first research objective, scholarly literature on the impact of labor emigration and FDIs on inclusive growth were reviewed. We begin with establishing the impacts of labor emigration and FDIs on inclusivity in the sending-economy. This is on the light of labor emigration's impact on factor prices in the sending-economy. Hence, its impact on wages, employment, and production can be traced.

2.1. Impact of Labor Migration on the Receiving-Economy

Labor migration's impact on the receiving-economy has been explicated (Engler et al., 2020; Tipayalai, 2020; Sherman et al., 2019; World Bank, 2018; Jaumotte et al., 2017; Merler, 2017; Ahsan et al., 2014; Dumont & Liebig, 2014; Wickramasekara, 2008; Dustmann et al., 2006; Bauer et al., 2005; Friedberg & Hunt, 1995; Hirose, 1994). Hence, we found value in probing on the impact of labor emigration on the sending-economy. While labor migration has both positive and negative impacts on both sending- and receiving economy, such phenomenon has to be managed. Katseli et al. (2006) comprehensively discussed the effects of migration on sending-economies. Managing labor migration may stimulate vital gains not only for migrants but also for sending- and receiving-economies. Sending economies, most of which are developing economies, may harness gains in terms of growth, investment, human capital accumulation, and poverty reduction if development policies would be recalibrated to diffuse the benefits to the entire economy. This points us to look into the impact of labor emigration and FDI on wages, employment, and production in the sending-economy.

2.2. Impact of Labor Emigration on Wages and Production in the Sending-Economy

Labor mobility across economies, particularly from less developed and developing economies to developed economies, poses substantial impact on the sending-economy. While the sending-economy will incur loss of human capital (i.e., brain drain) (Grebeniyk et al., 2021; Rivera & Tullao Jr., 2022, 2020) that will increase wages (Koczan et al., 2021; Vargas-Silva, 2020; Brown, 2015; Docquier et al., 2010), it also generates remittance flows (Bailey, 2015) and increases international connections through trade, FDIs, and technological transfers (Koczan et al., 2021). Hence, labor emigration generated economic and financial benefits to those left behind in the sending-economy. It provided temporary relief on domestic labor markets and helps reduce unemployment, particularly in economically-deprived areas (Kupets, 2012). However, according to Démurger (2015), it created distortions on the labor supply response of those who do not emigrate through higher reservation wages and reduced willingness to supply labor (Amuedo-Dorantes & Pozo, 2023).

Labor emigration generates remittance flows. Chami et al. (2018) presented cross-economy evidence on the effect of remittances on labor market outcomes. Remittances strongly impact both demand for and supply of labor in recipient-economies. It reduces labor force participation and overall unemployment for lower-wage, lower-productivity non-tradable industries at the

expense of high-productivity, high-wage tradable industries. Hence, despite inequality declines due to larger remittances, average wage and productivity growth decrease.

These distortions prompted policymakers to: (a) reassess the effects of labor emigration and design new approaches to identify conditions by which labor emigration can foster inclusivity (Miracle & Berry, 1970); (b) recalibrate policies of both labor-sending and labor-receiving economies on implementing effective and fair management of labor migration to create mutual benefits (Grebeniyk et al., 2021); (c) design reforms to foster inclusivity given labor migration and remittances (Chami et al., 2018); and (d) design policies that will enhance business and employment opportunities, harness the benefits of financial and technological inflows, and mitigate the loss of highly skilled labor (Koczan et al., 2021).

We underscore the consequence of labor emigration on wages. Because labor emigration reduces the labor force of the sending-economy, its short-term impact increases the wage rate in the sending-economy (Koczan et al., 2021; Vargas-Silva, 2020; Elsner, 2022, 2015; Brown, 2015; Docquier et al., 2010). Emigration alleviate unemployment and increase the income of the remaining workers (Asch, 1994). While this is the general finding, there are cases wherein such relationship does not hold. Specifically, Docquier et al. (2010) found evidence that labor emigration in Europe had a negative effect on the wage of the less educated workers who were left behind in the sending-economy resulting to increased inequality (Docquier et al., 2010). Meanwhile, using data for various labor-sending and labor-receiving economies, Elsner (2022, 2015) found otherwise for non-emigrants with different and complementary skills.

Ceteris paribus, labor emigration generally decreases the sending-economy's labor force (Tuladhar et al., 2014; Asch, 1994). This prompts the sending economy's PPF to shift inwards as it experiences a reduction, loss, or exhaustion of its scarce human resources (Salvatore, 2019; Appleyard et al., 2010). This also reduces its productive capacities (Tuladhar et al., 2014). As such, the production of labor- and capital-intensive goods will decline (Jinkjarak & Naknoi, 2011). Hence, given fixed capital and a smaller PPF, the higher productivity of labor brought about by labor emigration will still result to lower output (Romer, 1990).

On the contrary, Trehan (2001) discussed that the inward shift of the sending-economy's PPF, and the reduced production of both labor- and capital-intensive goods, can be mitigated if there are many unemployed labor. Thus, the sending-economy's PPF will not shift inwards and there will be no change in labor productivity, and there will be no decline in the production of labor- and capital-intensive goods. However, Bräuninger and Pannenberg (2002) argued that for OECD economies, the impact of unemployment on productivity heavily depends on the influence of human capital – unemployment has a long-run effect on the level of productivity.

Rising wage rate due to labor emigration will impact commodity prices (Suthaharan & Bleakley, 2022; Fløystad, 1972) and capital-labor ratio (Henderson, 2020). Holding the price of capital constant, an increase in wage rate will increase factor price ratio (i.e., price of labor/price of capital), which will increase commodity price ratio (price of labor-intensive good/price of capital-intensive good) (Cacnio, 2017; Lemos, 2004; Behman, 1969). Hence, the increase in commodity prices favoring labor-intensive goods will increase the production of labor-intensive goods and reduce production of capital-intensive goods (Jones, 2003).

With remittances, Al Mamun et al. (2016, 2015) argued that remittance inflows sent by the migrant workers increase the investment and the capital stock of the remittance-recipient economy that enhance the capital-labor ratio and improve overall labor productivity. However,

similar to Chami et al. (2018), Wonyra and Ametoglo (2020) found that remittances have a strong negative impact on agricultural labor productivity. For Amuedo-Dorantes and Pozo (2023), while remittances can enhance the welfare of households left behind and boost growth rates of remittance-recipient economies, it also increases reservation wages, and creates a culture of dependency that reduces labor force participation in remittance-recipient economies that inhibits productivity and economic growth.

2.3. Impact of FDI on Wages and Production in the Sending-Economy

FDIs are deemed effective instruments of promoting economic growth and development (OECD, 2002). It "brings capital and technology to target firms, industries, and locations, affecting demand for labor and therefore labor force composition, employment, average productivity, wage levels, and wage inequality" (Hale & Xu, 2016, p. 1). Notwithstanding spillover effects, FDIs result to: (1) higher wages and productivity because of an increase in skill premium (i.e., wage gap between skilled and lower-skilled workers); and (2) increased wages and productivity in local firms (Hale & Xu, 2016).

According to Arnal and Hijzen (2008), because evidence suggests that multinational enterprises (MNEs) tend to give higher compensation than their domestic counterparts, particularly when they operate in developing economies, FDIs' positive impact on wages, although small, diffuse to the laborers of domestic firms that serve as suppliers of MNEs, or recruit managers with prior experience working in foreign enterprises. Productivity also tends to increase because MNEs provide more training than domestic firms. This is supported by Abouelfarag and Abed (2018) wherein FDIs positively affects the average wages in the manufacturing sector in the long run. Thus, attracting more FDIs in the manufacturing sector will have a positive effect on average wages and raise the economy's production.

However, Vijaya and Kaltani (2007) found that FDI flows have a negative impact on overall wages, particularly in the manufacturing sector, and this impact is more pronounced among female workers. This is due to the reduction in bargaining power of labor given new labor market arrangements in a global economy where capital is free to move across economies in search of more favorable conditions. Hence, it can be construed that due to the reduction in overall wages in the manufacturing sector, it will result to reduced production of capital-intensive goods. The price of capital-intensive goods would increase attracting the inflow of capital. Consequently, in the short-term, there will be an increased labor demand to work with more capital. This will trigger wages to increase in the capital-intensive sector causing unemployed labor to offer their labor services or employed labor to shift from the labor-intensive sector to the capital-intensive sector. Therefore, the production of capital-intensive goods will attract foreign capital to capital-intensive sectors such as heavy industry, chemicals, construction, manufacturing, among others (Wysokińska & Kotwica, 1998). This will prompt employment to react to capital flow shocks that will reinforce the expansion of production in capital-intensive sector (Baškot, 2019).

Given factor prices in commodity prices, long-run effects manifest through wage increase that reduces the relative price of capital. This will increase the price of labor-intensive goods relative to capital-intensive goods. With an expanded PPF, the production of labor-intensive goods may increase and temper the increase in the capital-intensive goods (Tomlinson, n.d.). Hence, FDIs can give opportunities for unemployed laborers left behind in the sending-economy (Estrin, 2017; Rizvi & Nishat, 2009). It creates employment through new production

opportunities and capacities (Brincikova & Darmo, 2014). As supported by Saucedo et al. (2020), FDI inflows into the manufacturing sector of Mexico generated positive impacts in low- and high-skilled employment.

In Ukraine, while remittances resulted to higher taxes and customs revenues and reduced labor supply diminishes revenues from labor taxes and social security contributions, policymakers invited migrants, particularly the skilled, to invest in, return to, and create an attractive business environment in the economy so they can stimulate employability by employing domestic labor (Pieńkowski, 2020). This improved social aspects labor migration in Ukraine.

The Philippine experience showed a different outcome. According to the International Labour Organization [ILO] (2019), the expectation that FDIs would lead to the creation of more jobs that will employ surplus labor left behind in the economy did not materialize because: (1) educational institutions are geared towards producing mostly professionals rather than middle-skilled workers that industries require; and (2) trade patterns have largely shifted from primary goods exports to intermediate goods exports.

The different results between Ukraine and the Philippines supports the findings of Kang and Martinez-Vasquez (2022) that not all FDIs can lift the welfare of the poorest segments of the population and promote inclusivity. This is because there are conditions by which FDIs can effectively stimulate inclusive growth. They found that: (1) FDI has a positive effect on inclusive growth when there is a sufficiently large manufacturing sector and infrastructure base in the FDI-recipient economy; (2) FDI has a positive yet indirect effect on inclusive growth when the FDI-recipient economy has a large services sector. These highlight the importance of an economy's absorptive capacity. That is, FDIs require a certain environment to create more linkages, spillovers, and employment (Sugiharti et al., 2022; Amann & Virmani, 2014).

Table 1 summarizes the impact of labor emigration and FDI on the sending economy's wages, employment, and production.

Table 1: A-priori Impacts of Labor Emigration and FDIs on Wages, Employment, and Production in the Sending-Economy based on Scholarly Literature

Impulse	Response	Impact	Source
	Wages in the	+	Koczan et al. (2021); Vargas-Silva (2020); Elsner (2022, 2015); Brown (2015); Docquier et al. (2010); Asch (1994)
	sending-economy	-	Docquier et al. (2010); Elsner (2022, 2015)
Labor emigration		0	Bräuninger and Pannenberg (2002)
	Employment in the sending-economy	+	Kupets (2012); Asch (1994)
	Production in the sending-economy	-	Amuedo-Dorantes and Pozo (2023); Tuladhar et al. (2014); Jinkjarak and Naknoi (2011); Jones (2003); Romer (1990)
FDI	Wages in the	+	Saucedo et al. (2020); Arnal and Hijzen (2008)
	sending-economy	-	Vijaya and Kaltani (2007)

Employment in the sending-economy	+	Kang and Martinez-Vasquez (2022); Pieńkowski (2020); Saucedo et al. (2020); Estrin (2017); Brincikova and Darmo (2014); Rizvi and Nishat (2009)
Production in the sending-economy	+	Kang and Martinez-Vasquez (2022); Pieńkowski (2020); Baškot (2019); Wysokińska and Kotwica (1998)

Source: Compiled by the authors.

2.4. Research Gap

In identifying the research gap, Figure 1 maps the scholarly literature on the impacts of labor emigration on the sending-economy. It has been apparent that significant attention has been given in explicating the impacts of labor immigration than of emigration, when in fact, the immigrant of the receiving-economy is the same emigrant of the sending-economy. The discussion on the impacts of labor migration to the sending-economy remains to be limited. In the process of gathering relevant literature, search process using labor migration, immigration, and emigration as keywords generates mostly immigration and impacts of immigration on receiving-economies and wage of native workers in the receiving-economies. A few have touched both perspectives such as that of Massey et al. (1993); Joly (2000), Hanson (2009); Scheja et al., (2011); and Ratha et al. (2013). Echoing Démurger (2015), because of the limited discussion on the causal impact of emigration on those who are left behind, there remains a gap in tracing such dynamics with inconclusive evidence. Hence, we augment the literature on the impacts of labor emigration on the sending-economy particularly on wages, employment, and production in the capital- and labor-intensive sector of the Philippines.

Impact of Labor Impact of Labor Emigration Immigration zan et al. (2021); zas-Silva (2020); Elsner Impact of (2022, 2015); Bro Docquier et al 17 FDI r et al. (2010); Asch 1994)] [Docquier e. ... 2010); Elsner (2022, 2015) On Wages in the aucedo et al. (2020); Arnal and Hij (008)] [Vijaya and Kaltani (2007)] Sending-Economy Impact of Labor Engler et al. (2020); Tipayalai (2020); She Migration Kang and Martinez-Vasquez (2022); al. (2019); World Bank (2018); Jaumotte et al. (2017); Merler (2017); Ahsan et al. (2014); Dumont and Liebig (2014); Wickramasekara On Employment in Pieńkowski (2020); Saucedo et al (2020); Estrin (2017); Brincikova Ratha et al. (2013); Scheja et al., (2011); the Sending-Darmo (2014); Rizvi and Nishat (2009) Economy (2008); Dustmann et al. (2006); Bauer et a (2005); Friedberg anc Hunt (1995); Hirose (1994) (2000): Massev et al Kupets (2012); Asch (1994) On Production in Kang and Martinez-Vasquez (2022): wski (2020): Baškot (2019): the Sending okińska and Kotwica (1998) Economy Tuladhar et al. (2014); Jinkjarak a Naknoi (2011); Jones (2003); Rom Agriculture and Impact of labor emigration and Manufacturing FDI on wages, employment, and production in the labor- and Industries . capital-intensive of the (Philippines) Philippines

Figure 1: Literature Map and Research Gap

Source: Constructed by the authors.

3. Research Design and Methodology

3.1. Conceptual Framework

On the basis of theory and scholarly literature Figure 2 maps the conceptual link between:

- 1. Labor emigration from the Philippines and FDI inflows to the Philippines as impulse variables;
- 2. Wages, employment, and production in the labor- and capital-intensive subsectors of the Philippines.

Feedback effects between FDI inflows and production in the labor- and capital-intensive subsectors of the Philippines are also mapped.

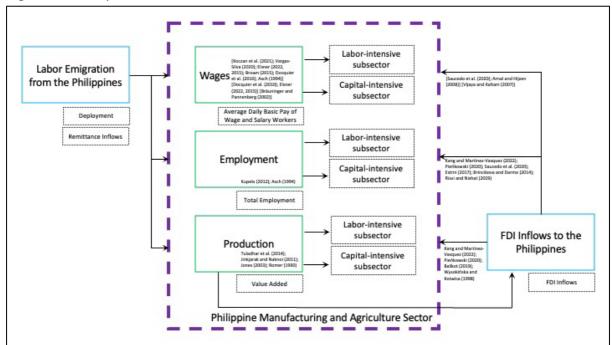


Figure 2: Conceptual Framework

Source: Constructed by the authors.

3.2. Research Design and Data Requirements

3.2.1. Vector Autoregression

In addressing our second research objective, we adapted the empirical approach of Rivera and Tullao Jr. (2022, 2020) subjecting macroeconomic data to Vector Autoregression (VAR). This was developed by Sims (1980) that generalizes the univariate autoregressive model to a dynamic multivariate time series. This is used in analyzing the dynamic behavior of time series variables towards forecasting, structural inference, and policy analysis (Enders, 2004).

Due to empirical issues in using FDI in classical inference (Poelhekke & van der Ploeg, 2013), we follow Baškot (2020) in estimating the causal link illustrated in Figure 2. VAR is "an answer on need for less structured equation systems" (p. 2638). It was deemed appropriate because it

resembles a structural equation except that several endogenous variables are considered together. Each endogenous variable is explained by its lagged values and all other endogenous variables in the model (Gujarati & Porter, 2009). It is a-theoretic wherein the data generation process determines the model. However, it is susceptible to potential generalizations and simplification of a general group of models (Elliott et al., 2006). Nonetheless, this approach is chosen given the nature of data to be utilized and the existence of feedback effects between production and FDI inflows (Santos, 2023; Jimenez et al., 2021; Jung, 2020).

Equation 1 specifies a simple bivariate VAR(p) model, where p is the optimal lag order.

$$y_t = \alpha_{10} + \alpha_{11} y_{t-1} + \alpha_{12} z_{t-1} + e_{yt}$$

$$z_t = \alpha_{20} + \alpha_{21} y_{t-1} + \alpha_{22} z_{t-1} + e_{zt}$$
(1)

where two shocks produce the error term $\begin{bmatrix} e_{1t} \\ e_{2t} \end{bmatrix} = \begin{bmatrix} 1 & b_{12} \\ b_{21} & 1 \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon_{yt} \\ \varepsilon_{zt} \end{bmatrix}$.

3.2.2. Variable Declaration

From Equation 1, it can be seen that p = 1 (i.e., there is only one lag). Following Baškot (2020), from this simple bivariate VAR(p) model, it can be expanded to a multivariate case by including other variables and lags. Hence, we have the following system of equations represented in Equations 2 to 5:

$$\begin{cases} DEPLY_{t} \\ WMNFG_{t} \\ EMNFG_{t} \end{cases}, \begin{cases} DEPLY_{t} \\ WAGRI_{t} \\ EAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

$$\begin{cases} lnREMIT_{t} \\ WMNFG_{t} \\ EMNFG_{t} \end{cases}, \begin{cases} lnREMIT_{t} \\ WAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

$$\begin{cases} lnFDIFL_{t} \\ WMNFG_{t} \\ EMNFG_{t} \end{cases}, \begin{cases} lnFDIFL_{t} \\ WAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PMNFG_{t} \end{cases}, \begin{cases} lnFDIFL_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

$$\begin{cases} lnFDIFL_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

$$\begin{cases} lnFDIFL_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

$$\begin{cases} lnFDIFL_{t} \\ PAGRI_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

$$\begin{cases} lnFDIFL_{t} \\ PAGRI_{t} \\ PAGRI_{t} \end{cases}$$

Equation 2 observes deployment as measure of labor emigration as an impulse or shock to wages, employment, and production in the labor- and capital-intensive sectors of the Philippines, represented by the manufacturing and agricultural industry, respectively.

Equation 3 observes the logarithmic values of remittance inflows as measure of labor emigration as an impulse or shock to wages, employment, and production in the labor- and capital-intensive sectors of the Philippines, represented by the manufacturing and agricultural industry, respectively.

Equation 4 observes the logarithmic values of FDI inflows as an impulse or shock to wages, employment, and production in the labor- and capital-intensive subsectors of the Philippines, represented by the manufacturing and agricultural industry, respectively.

Equation 5 observes logarithmic values of FDI inflows as an impulse or shock to production in the labor- and capital-intensive sectors of the Philippines, represented by the manufacturing and agricultural industry, respectively. This estimates the feedback effect between production and FDI inflows as depicted in Figure 2.

Time series data sourced for national government (PSA, BSP) and multilateral agency (World Bank) will be subjected to our VAR(p) model specified in Equations 2 to 5.

Table 2 presents the trends of our variables for the period 1991 to 2021. The full dataset is in Appendix 1 to illustrate the trend of our variables. Table 3 presents the variable labels and corresponding descriptions.

Table 4 summarizes the a-priori expectations on the direction of relationships of the variables indicated in Table 3 and included in our VAR(p) model. Similar to Table 1, this is anchored on evidence found in literature.

Table 2: Trends of Variables

Variable	Trend
	Deployment has been increasing through the years only to be
$DEPLY_t$	significantly disrupted by the coronavirus (COVID-19) pandemic in
	2020.
$REMIT_t$	Remittances have always been resilient and has been on an increasing
KENIII t	trend with a slight dip during the COVID-19 pandemic in 2020.
$FDIFL_t$	FDI flows have been erratic depending on the Philippines' state of
$TDIFL_t$	economic and political health.
$PMNFG_t$ and $PAGRI_t$	Production in the capital- and labor-intensive sector has been increasing
$IMINI'O_t$ and $IAOINI_t$	with a dip during the COVID-19 pandemic in 2020.
$WMNFG_t$ and $WAGRI_t$	Wages in the capital- and labor-intensive sector has been increasing with
$WWW G_t$ and $WAGKI_t$	apparent wage gap between the sectors.
$EMNFG_t$ and $EAGRI_t$	Employment in the capital- and labor-intensive sector has been increasing
$EMINI' O_t$ and $EAONI_t$	with a dip during the COVID-19 pandemic in 2020.

Source: Compiled by the authors.

Table 3: Variable Description and Source of Data

Variable Code	Variable Description	Measurement	Time Measure	Data Source
$DEPLY_t$	Deployment of OFWs abroad	Total number of OFWs deployed (in thousand persons)	Annual	PSA (Survey on Overseas Filipino)
$WMNFG_t$	Wages in the Philippine manufacturing industry (capital- intensive sector)	Average daily basic pay of wage and salary workers in the Philippine manufacturing industry (capital-intensive sector) (in PHP)	Annual	PSA (Labor Force Survey)
WAGRI _t	Wages in the agricultural industry (labor-intensive sector)	Average daily basic pay of wage and salary workers in the Philippine agricultural industry (labor-intensive sector) (in PHP)	Annual	PSA (Labor Force Survey)

$EMNFG_t$	Employment in the Philippine manufacturing industry (capital- intensive sector)	Philippine Philippine manufacturing industry (capital-intensive) ustry (capital- (number of people		World Bank
$EAGRI_t$	Employment in the agricultural industry (labor-intensive sector)	Employment in the Philippine agricultural industry (labor-intensive) (number of people employed)	Annual	World Bank
$PMNFG_t$	Production in the Philippine manufacturing industry (capital- intensive sector)	Value added of the Philippine manufacturing industry (capital-intensive) (production level)	Annual	World Bank
$PAGRI_t$	Production in the agricultural industry (labor-intensive sector)	Value added of the Philippine agricultural sector (labor-intensive) (production level)	Annual	World Bank
$lnREMIT_t$	Logarithmic values of remittance inflows to the Philippines	OFWs' cash remittances (in thousand USD) expressed in logarithmic values	Annual	BSP (Overseas Filipinos' Cash Remittances)
ln <i>FDIFL</i> t	Logarithmic values of FDI inflows to the Philippines	FDI inflows to the Philippines (in billion USD) expressed in logarithmic values	Annual	World Bank Macrotrends (Philippines Foreign Direct Investment)

Source: Compiled by the authors.

Table 4: A-priori Expectations of Variables of Interest

Impulse Variable	Response Variables	dy/dx	Basis		
	$WMNFG_t$	+	Elsner (2022, 2015); Koczan et al. (2021); Vargas- Silva (2020); Brown (2015); Docquier et al. (2010)		
	$EMNFG_t$	+	Kupets (2012); Asch (1994)		
$DEPLY_t$		- (due to changes in factor prices)	Cacnio (2017); Lemos (2004); Jones (2003); Behman (1969)		
	$PMNFG_t$	_	Salvatore (2019); Tuladhar et al. (2014); Jinkjarak and Naknoi (2011); Appleyard et al. (2010); Romer (1990)		
		+/- (depending on who emigrated)	Bräuninger and Pannenberg (2002); Trehan (2001)		
	$WAGRI_t$	+	Elsner (2022, 2015); Koczan et al. (2021); Vargas- Silva (2020); Brown (2015); Docquier et al. (2010)		
	$EAGRI_t$	+	Kupets (2012); Asch (1994)		
$DEPLY_t$	$PAGRI_{t} = \frac{\text{(due to changes)}}{\text{in factor prices)}}$	Cacnio (2017); Lemos (2004); Jones (2003); Behman (1969)			
		Salvatore (2019); Tuladhar et al. (2014); Jinkjarak and Naknoi (2011); Appleyard et al. (2010); Romer (1990)			
		+/_	Bräuninger and Pannenberg (2002); Trehan (2001)		

		(depending on who emigrated)	
			Elsner (2022, 2015); Koczan et al. (2021); Vargas-
	$WMNFG_t$	+	Silva (2020); Brown (2015); Docquier et al. (2010)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	Chami et al. (2018)
	$EMNFG_t$	+	Kupets (2012); Asch (1994)
$lnREMIT_t$	Zimi i Gi		Koczan et al. (2021); Pieńkowski (2020); Bailey
	$PMNFG_t$	+	(2015); Al Mamun et al. (2016, 2015)
	$PMNFG_t$	-	Amuedo-Dorantes and Pozo (2023); Wonyra and Ametoglo (2020); Chami et al. (2018)
		1	Elsner (2022, 2015); Koczan et al. (2021); Vargas-
	$WAGRI_t$	+	Silva (2020); Brown (2015); Docquier et al. (2010)
		-	Chami et al. (2018)
1 DELUT	$EAGRI_t$	+	Kupets (2012); Asch (1994)
$lnREMIT_t$	DACDI		Koczan et al. (2021); Pieńkowski (2020); Bailey
	$PAGRI_t$	+	(2015); Al Mamun et al. (2016, 2015)
	$PAGRI_t$		Amuedo-Dorantes and Pozo (2023); Wonyra and
		-	Ametoglo (2020); Chami et al. (2018)
$PMNFG_t$	$lnFDIFL_t$	+	Santos (2023); Jimenez et al. (2021); Jung (2020)
$PAGRI_t$	$lnFDIFL_t$	+	Santos (2023); Jimenez et al. (2021); Jung (2020)
	$WMNFG_t$ -	+	Saucedo et al. (2020); Arnal and Hijzen (2008)
		_	Vijaya and Kaltani (2007)
	$EMNFG_t$		Kang and Martinez-Vasquez (2022); Pieńkowski (2020); Saucedo et al. (2020); Estrin (2017);
$lnFDIFL_t$		+	Brincikova and Darmo (2014); Rizvi and Nishat
IIII $DII L_l$			(2009)
			Kang and Martinez-Vasquez (2022); Sugiharti et al.
	$PMNFG_t$	+	(2022); Pieńkowski (2020); Baškot (2019); Amann
	•		and Virmani (2014); Wysokińska and Kotwica (1998)
	III.1.CDI	+	Saucedo et al. (2020); Arnal and Hijzen (2008)
	$WAGRI_t$	_	Vijaya and Kaltani (2007)
			Kang and Martinez-Vasquez (2022); Pieńkowski
	EACDI		(2020); Saucedo et al. (2020); Estrin (2017);
$lnFDIFL_t$	$EAGRI_t$	+	Brincikova and Darmo (2014); Rizvi and Nishat
			(2009)
	$PAGRI_t$	+	Kang and Martinez-Vasquez (2022); Sugiharti et al. (2022); Pieńkowski (2020); Baškot (2019); Amann and Virmani (2014); Wysokińska and Kotwica (1998)

Source: Compiled by the authors.

3.2.3. Standard Time Series Procedures

Expressing Equations 2 to 5 in an error-correction modelling format of a VAR(p) model, standard time-series econometric techniques will facilitate analysis of short-run dynamics.

Prior to starting any time series analysis, we need to establish first stationarity, cointegration, and optimal lag order among our variables of interest. By implementing the Phillips-Perron Stationarity Test and the Engle-Granger Cointegration Test, we can established that: (1) we would be using level or first differenced values; and (2) there exists cointegration between our variables of interest. Note that if there exists a stationary linear combination of non-stationary random variables, such variables combined are cointegrated (Ender, 2004). That is, "cointegration is said to exist between two or more non-stationary time series if they possess the same order of integration and a linear combination (weighted average) of these series is

stationary" (Paul, 2014, 281). Hence, we can establish empirical relationship between our chosen variables. We also determine the optimal lag order, denoted by p in our VAR(p) model, through the Final Prediction Error (FPE), Akaike Information Criterion (AIC), Hannan-Quin Information Criterion, and the Schwarz Bayesian Information Criterion (SBIC). The optimal lag order selection for each of the equation in the system is based on the order of integration determined from the stationarity test.

3.2.4. VAR Estimation and Post-VAR Analysis

With information on the order of differentiation, existence of cointegration, and optimal lag order, the VAR(p) model can now be estimated following the notation in Equation 1. Our VAR(p) estimates are expounded using post-VAR results through the Forecast Error Variance Decomposition (FEVD) and Orthogonal Impulse-Response Function (OIRF), which can be used for inferences. Enders (2004) explained that the FEVDs partition the variations in a variable to shocks in other variables in the system including its own innovations. It provides natural measures of relative importance of various shocks in explaining the variable of interest. Meanwhile, the OIRF traces the responses of the variables in the system to one standard deviation shocks in other variables. They indicate directions, magnitudes, and persistence of a variable's responses to impulses in the system.

It is important to note that in the generation of variance decompositions and impulse—response functions, innovations contained in the equations may be contemporaneously correlated. That is, a shock in one variable may work through the contemporaneous correlation with innovations in other variables. Since isolated shocks to individual variables cannot be identified due to contemporaneous correlation, the responses of a variable to innovations in another variable of interest cannot be amply represented (Enders 2004). To resolve this, an empirical strategy that orthogonalizes the innovations is employed – the Cholesky factorization.

Review of scholarly Secondary data gathering from national literature on the Results Discussion Estimation technique: impacts of labor government agencies Vector Autoregression Policy Implications migration on sendingand multilateral and receiving-economy organization Explicate conditions and · Identification of · Philippine Statistics provide policy Cointegration test Authority research gap Optimal lag structure implications on how labor emigration and FDIs can effectively lead to · Bangko Sentral ng inclusive growth. · VAR estimation Forecast Error The World Bank Decomposition Orthogonal Impulse-Response Function

Figure 3: Methodological Process

Source: Constructed by the authors.

4. Results and Discussion

4.1. Standard Time Series Analysis Procedures

Table 5 presents the results of the Phillips-Perron stationarity test. We establish that all our variables have varying order of integration. Except for $\ln FDIFL_t$, which is stationary at level values (i.e., integrated of order 0), and $WAGRI_t$, which is stationary at second differencing (i.e., integrated of order 2), the rest of the variables are stationary at first differencing (i.e., integrated of order 1). Because the highest order of integration must prevail (Enders, 2004), we will subject all variables to first differencing because: (1) it is much more difficult to interpret variables in its second differencing (i.e., growth of the growth rate), and (2) since our time series data is limited, degrees of freedom is conserved by preferring first differencing that second differencing. Using the first differenced values of $WAGRI_t$ is better than using its level values (i.e., the first differenced values are closer to stationarity than level values).

Results of the Phillips-Perron stationarity test are supplemented with the Engle-Granger cointegration test. This is to establish whether there exists long run relationship between the variables of interest indicated in Equations 2 to 5. Table 6 summarizes the cointegration results. All equations demonstrated cointegration.

Table 5: Order of Integration of Variables as per the Phillips-Perron Stationarity Test

Variable	Order of Integration, $I(d)$	Test Statistic, $Z(t)$	Critical Value	Alpha	MacKinnon p-value for Z(t)
$DEPLY_t$	1	-4.756	-3.723	1%	0.0001
$lnREMIT_t$	1	-4.523	-3.723	1%	0.0002
$lnFDIFL_t$	0	-3.452	-2.986	5%	0.0093
$PMNFG_t$	1	-7.038	-3.723	1%	0.0000
$WMNFG_t$	1	-4.910	-3.723	1%	0.0000
$EMNFG_t$	1	-8.041	-3.723	1%	0.0000
$PAGRI_t$	1	-4.100	-3.723	1%	0.0010
$WAGRI_t$	2	-11.435	-3.730	1%	0.0000
$EAGRI_t$	1	-5.377	-3.723	1%	0.0000

Source: Computed by the authors.

Table 6: Summary Results of the Engle-Granger Cointegration Test

Equation	Variables	Test Statistic, $Z(t)$	Critical Value	Alpha	Remarks
2	$D1.DEPLY_t \ D1.WMNFG_t \ D1.EMNFG_t \ D1.PMNFG_t$	-5.186	-5.313	1%	Cointegrated
2	$D1.DEPLY_t$ $D1.WAGRI_t$ $D1.EAGRI_t$ $D1.PAGRI_t$	-6.138	-5.313	1%	Cointegrated

3	$D1.lnREMIT_t \ D1.WMNFG_t \ D1.EMNFG_t \ D1.PMNFG_t$	-5.315	-4.497	5%	Cointegrated
3	$D1.lnREMIT_t \ D1.WAGRI_t \ D1.EAGRI_t \ D1.PAGRI_t$	-5.124	-4.497	5%	Cointegrated
4	$D1.lnFDIFL_t \ D1.WMNFG_t \ D1.EMNFG_t \ D1.PMNFG_t$	-7.755	-5.313	1%	Cointegrated
4	$D1.lnFDIFL_t \ D1.WAGRI_t \ D1.EAGRI_t \ D1.PAGRI_t$	-7.685	-5.313	1%	Cointegrated
5	$D1.lnFDIFL_t$ $D1.PMNFG_t$	-8.272	-4.301	1%	Cointegrated
5	$D1.lnFDIFL_t$ $D1.PAGRI_t$	-8.302	-4.301	1%	Cointegrated
	·		·	· · · · · · · · · · · · · · · · · · ·	·

Source: Computed by the authors.

We also determine the optimal lag order, denoted by p in our VAR(p) model, using various information criterion. The optimal lag order selection for each of the equation in the system is based on the order of integration determined in Table 5. Table 7 summarizes the optimal lag order for each of our variables of interest. The maximum lag order prescribed by any of the information criterion is selected. Since most of our equations have been prescribed an optimal lag order of 4, we apply this to all our equations for consistency and co.

Table 7: Summary Selection of Optimal Lag Order (p).

Equation	Variables	FPE	AIC	HQIC	SBIC	Chosen p
2	$D1.DEPLY_t \ D1.WMNFG_t \ D1.EMNFG_t \ D1.PMNFG_t$	2	4	0	0	4
2	$D1.DEPLY_t$ $D1.WAGRI_t$ $D1.EAGRI_t$ $D1.PAGRI_t$	4	4	4	0	4
3	$D1.lnREMIT_t$ $D1.WMNFG_t$ $D1.EMNFG_t$ $D1.PMNFG_t$	0	0	0	0	4 (by default)
3	$D1.lnREMIT_t$ $D1.WAGRI_t$ $D1.EAGRI_t$ $D1.PAGRI_t$	3	3	3	0	4 (by default)
4	$D1.lnFDIFL_t \ D1.WMNFG_t \ D1.EMNFG_t \ D1.PMNFG_t$	0	0	0	0	4 (by default)

4	$D1.lnFDIFL_t \ D1.WAGRI_t \ D1.EAGRI_t \ D1.PAGRI_t$	3	3	3	0	4 (by default)
5	$D1.lnFDIFL_t \ D1.PMNFG_t$	1	1	0	0	4 (by default)
5	D1. lnFDIFL _t D1. PAGRI _t	0	0	0	0	4 (by default)

Source: Computed by the authors.

Detailed results of the Phillips-Perron stationarity test, Engle-Granger cointegration test, and optimal lag order selection are presented in Appendix 2 in *Stata* log document.

4.2. Empirical Findings

In estimating our VAR(p) model indicated in Equations 2 to 5, time series specifications identified in Tables 5 to 7 have been incorporated.

4.2.1. VAR Results

Table 8 presents the VAR estimates of Equation 2 showing the impact of deployment on wages, employment, and production in the capital- and labor-intensive sectors of the Philippines.

Table 8: Summary VAR(p) Results for Equation 2

Ca	apital-intensive	sector	Labor-intensive sector				
Impulse	Response	Coefficien t	p	Impulse	Response	Coefficien t	p
$L1.D1.DEPLY_t$		0.0057	0.535	L1.D1.DEPLY		0.0060	0.019
21.21.221.21		0.000,	0	t			0
$L2.D1.DEPLY_t$		-0.0032	0.671	L2.D1.DEPLY	- 1	0.0163	0.000
•	D1.WMNFG		0	t a na na nana	D1. <i>WAGRI</i>		0
L3.D1. $DEPLY_t$	t	0.0224	0.002	L3.D1.DEPLY	t	0.0180	0.000
•			0	t A D1 DEDLY		0.0244	0
$L4.D1.DEPLY_t$		0.0302	0.003	L4.D1. <i>DEPLY</i>		0.0344	0.000
-			0 529	L1.D1.DEPLY		264.7007	0 467
$L1.D1.DEPLY_t$	$D1.EMNFG_t$	-194.1467	0.538	L1.D1.DEPL1		-364.7007	0.467 0
			0.347	L2.D1.DEPLY		-756.4681	0.171
$L2.D1.DEPLY_t$		-242.7147	0.347	LZ.D1.DEI LI		-/30.4001	0.171
			0.016	L3.D1.DEPLY	$D1.EAGRI_t$	101.3016	0.860
$L3.D1.DEPLY_t$		600.2947	0.010	LS.DT.DEFET		101.5010	0.000
		00.110.1	0.797	L4.D1. <i>DEPLY</i>		-314.1808	0.606
$L4.D1.DEPLY_t$		-89.1134	0	t			0
I I DI DEDIN		16 201 56	0.449	L1.D1.DEPLY		-1,643.69	0.687
$L1.D1.DEPLY_t$		-16,291.56	0	t			0
I 2 D1 DEDIV		12 625 57	0.473	L2.D1.DEPLY		6,518.24	0.146
$L2.D1.DEPLY_t$	$D1.PMNFG_t$	-12,635.57	0	t	$D1.PAGRI_t$		0
L3.D1. $DEPLY_t$	$D1.FMNFG_t$	-5,259.90	0.756	L3.D1.DEPLY	$D1.FAGKI_t$	8,267.24	0.077
$L3.D1.DEILI_t$		-3,239.90	0	t			0
L4.D1.DEPLY		31,455.32	0.183	L4.D1.DEPLY		-5,062.51	0.306
		31,733.32	0	t			0
L1.D1.WMNF	$D1.EMNFG_t$	20,761.71	0.002	L1.D1.WAGR	$D1.EAGRI_t$	-46,112.75	0.015
G_t		20,701.71	0	I_t	21.2.10107		0

L2.D1. $WMNF$ G_t		-20,341.40	0.021	L2.D1.WAGR		-11,342.33	0.692
L3.D1.WMNF		21,031.93	0.007	L3.D1.WAGR		11,713.02	0.723
G_t L4.D1. $WMNF$		-29,571.94	0.000	L4.D1.WAGR		1,787.70	0.962
G_t			0 00 7	I_t		2.05.42	0 021
L1.D1.EMNFG		2.4661	0.885	L1.D1. $EAGRI_t$	D1 D4CD4	-3.8543	0.031
L2.D1.EMNFG		22.7393	0.206	L2.D1. $EAGRI_t$		0.5697	0.784
L3.D1.EMNFG	$D1.PMNFG_t$	11.1895	0.613 0	L3.D1. <i>EAGRI</i> _t	$D1.PAGRI_t$	-5.1235	0.002
L4.D1. <i>EMNFG</i>		-13.2016	0.481 0	L4.D1.EAGRI _t		-0.6472	0.750 0

Note: See Appendix 3.1 and Appendix 3.2 for the full VAR(p) estimated results; shaded areas indicate statistical significance at least at the 10% alpha.

Source: Computed by the authors.

Deployment increases wages in both capital- and labor-intensive sectors. This is consistent with theory and literature that predicts an inverse relationship between labor supply and wages. We note that deployment increases wages in both capital- and labor-intensive sectors, the wage increase more pronounced in the latter. Because deployment reduces labor supply given domestic demand for labor, it will trigger a wage increase in both sectors. This reinforces the findings of Elsner (2022, 2015), Koczan et al. (2021), Vargas-Silva (2020), Brown (2015), and Docquier et al. (2010). Labor emigration has economic and financial benefits to those left behind by increasing their labor income.

While labor emigration reduces the labor force, deployment has a positive impact on employment in the capital-intensive sector. Deployment increases employment in the manufacturing sector. Consistent with theory, a decline in labor supply due to deployment will increase employment in the capital-intensive sector because of emigrating labor from the labor-intensive sector. Such results are aligned with Kupets (2012) and Asch (1994).

However, deployment has a negative and statistically insignificant effect on employment in the labor-intensive sector, across all lags. This is because the positive effect of an increase in wage rate on employment is offset by the reduction of labor due to deployment. Alternatively, while the Lewis' model of structural change (Todaro & Smith, 2014) predicts the possibility that surplus labor from the labor-intensive sector moves to the capital-intensive sector due to the relative unevenness in wages and living standards, mobility may not be feasible as there exist mismatches in skills available in the labor-intensive sector vis-à-vis required skills in the capital-intensive sector. In addition, the unemployed worker in labor-intensive sector are not mobilized to work because of the limited or lack of skills. We can construe that the negative impact of deployment on employment can trigger a lower output in agriculture, which is consistent with theory.

Results also show that **deployment is not a strong predictor of production in the capital-intensive sector**. This opposes the findings of Salvatore (2019), Tuladhar et al. (2014), Jinkjarak and Naknoi (2011), Appleyard et al. (2010), and Romer (1990) indicating a negative impact of deployment on production. While we expect that deployment reduces and the scarce human resources of an economy resulting to an inward shift in its PPF, this does not hold in the Philippine manufacturing sector. However, we found evidence that **deployment positively yet weakly impacts production in the labor-intensive sector** (at the 10% significance level).

This is not consistent with theory since the emigrating labor may contract the PPF in agriculture. Since deployment has a negative effect on employment, albeit insignificant, reduced employment in agriculture will reduce output in agriculture.

Consistent with Glotis and Mylonas (2022) and Yu et al. (2021), the impact of wages on employment in the capital-intensive sector is statistically significant yet ambiguous as evidenced by the varying direction of impact. The negative impact of wages on employment in the labor-intensive sector is consistent with the findings of Neumark (2018) that higher wages discourage firms from hiring the low-wage, low-skill workers suggesting that increase in wages have the tendency to reduce jobs available to low-skill workers.

On one hand, employment has a statistically insignificant impact on production in the capital-intensive sector. This anomaly can be traced to the inability of the Philippine manufacturing sector "to provide the dynamic growth push" that the successful, high-flying East Asian economies experienced" (Intal et al., 2008, p. 15) to allow it to contribute more to production. This is worsened by "instabilities" and "institutional weaknesses" that persist in the sector (Williamson & de Dios, 2014, p. 47). On the other hand, employment has a negative and statistically significant impact on production in the labor-intensive sector, consistent with Ioan (2014). This can be traced to the low economic performance of the Philippine agricultural sector (Galang, 2019). Meanwhile, the increase in wages and employment in the capital-intensive sector do not strongly trigger an increase in production.

That is, the increase in wages and employment in the capital-intensive sector do not strongly trigger an increase in production. This can be explained by the fact that the manufacturing sector, being a capital-intensive sector, will need more capital relative to labor to increase its production. Since labor has increased in the manufacturing sector but was not accompanied by an increase in production, it can be construed that it still lacks the necessary capital to mix with additional labor. That is, labor surplus is not eliminated in the agricultural sector because the manufacturing sector has limited capital to absorb additional employment. For production to expand, the increase in employment arising from deployment must be accompanied by a significant influx of capital.

These findings share alignment with theory and literature suggesting that deployment impacts wages (Elsner 2022, 2015; Koczan et al., 2021; Vargas-Silva, 2020; Brown, 2015; Docquier et al., 2010), which in turn ambiguously affects employment (Glotis & Mylonas, 2022; Yu et al., 2021; Neumark, 2018), which in turn positively affects production on the condition that "employment growth involves both a high economic performance, expressed mainly by the high level of work performance and especially the development and diversification of the services sector" (Ioan, 2014, p. 268).

Table 9 presents the VAR estimates of Equation 3 indicating the impact of remittances on wages, employment, and production in the capital- and labor-intensive sectors of the Philippines.

Table 9: Summary VAR(p) Results for Equation 3

Ca	apital-intensive	sector		Labor-intensive sector				
Impulse	Response	Coefficien t	p	Impulse	Response	Coefficien t	p	
$L1.D1.\ln REMI$ T_t	D1. <i>WMNF</i>	-23.1370	0.017	L1.D1.ln $REMI$ T_t	D1. <i>WAGRI</i>	-20.9544	0.01	
L2.D1. $\ln REMI$		-7.0951	0.417	L2.D1.ln $REMI$		8.3882	0.15 7	
L3.D1. $\ln REMI$	G_t	-0.9710	0.924	L3.D1. $\ln REMI$	t	1.6342	0.77	
$\begin{array}{c} T_t \\ \text{L4.D1.ln} REMI \\ T_t \end{array}$		6.9091	0.467	L4.D1. $\ln REMI$		-4.3845	0.43	
$L1.D1.\ln REMI$ T_t		-210,438.2	0.443	L1.D1.ln $REMI$ T_t		-974,920.1	0.05	
L2.D1. $\ln REMI$		345,478.6	0.161	L2.D1. $\ln REMI$		-59,779.81	0.87	
L3.D1. $\ln REMI$ T_t	$D1.EMNFG_t$	-703,562.9	0.015	L3.D1. $\ln REMI$	$D1.EAGRI_t$	-849,121.2	0.01	
L4.D1. $\ln REMI$		229,433.8	0.392	L4.D1. $\ln REMI$		1,500,874	0.00	
$\frac{T_t}{\text{L1.D1.ln}REMI}$		-2.29e+07	0.183	L1.D1. $\ln REMI$	D1.PAGRI _t	2618805	0.66	
L2.D1. $\ln REMI$		-5,555,346	0.719 0	L2.D1. $\ln REMI$		-1350566	0.75 6	
L3.D1. $\ln REMI$ T_t	$D1.PMNFG_t$	-1.28e+07	0.481	L3.D1. $\ln REMI$ T_t		-8434784	0.04	
L4.D1. $\ln REMI$ T_t		-2.73e+07	0.104	$ \begin{array}{c} T_t \\ \text{L4.D1.ln} REMI \\ T_t \end{array} $		-2066286	0.61	
$L1.D1.WMNF$ G_t		14,386.62	0.022	L1.D1.WAGRI _t		-71263.61	0.00	
L2.D1. $WMNF$ G_t	54 51 515 6	-13,015.62	0.036	L2.D1.WAGRI _t		-27882.58	0.16	
L3.D1. $WMNF$ G_t	$D1.EMNFG_t$	15,874.52	0.003	L3.D1.WAGRI _t	$D1.EAGRI_t$	33653.44	0.07	
$\begin{array}{c} G_t \\ \text{L4.D1.} WMNF \\ G_t \end{array}$		-26,670.89	0.000	L4.D1.WAGRI _t		47475.92	0.03	
$L1.D1.EMNFG_t$		17.1189	0.292	L1.D1.EAGRI _t		-5.102439	0.00	
L2.D1. $EMNFG_t$		31.2314	0.067	L2.D1. $EAGRI_t$	D1 D4CD	.6963282	0.77 7	
L3.D1. $EMNFG_t$	$D1.PMNFG_t$	12.1717	0.534	L3.D1.EAGRI _t	$D1.PAGRI_t$	-5.455042	0.00	
L4.D1. $EMNFG_t$		-6.2320	0.732	L4.D1.EAGRI _t		-2.229855	0.27	

Note: See Appendix 4.1 and Appendix 4.2 for the full VAR(p) estimated results; shaded areas indicate statistical significance at least at the 10% alpha.

Source: Computed by the authors.

There is evidence that remittances decrease wages and employment in the capital- and labor-intensive sectors. This is one of the controversies surrounding remittances, its accompanying distortions, and its capacity to trigger dependency on its recipients. According to Amuedo-Dorantes and Pozo (2023), remittances can alleviate budget constraints, raise reservation wages, reduce the employment likelihood and hours worked by recipients, raise its recipients' opportunity cost of leisure resulting to lower labor supply. For Chami et al. (2018), there is also evidence that remittances reduce overall unemployment, but this holds for lowerwage, lower-productivity non-tradable industries at the expense of high-productivity, high-

wage tradable sectors. Hence, even though inequality declines because of larger remittances, average wage still declines.

The negative relationship between remittances and employment in the capital- and labor-intensive sectors is a counterintuitive result. While there is concurrence in scholarly literature that labor emigration can prompt the increase in employment in the sending-economy (Kupets, 2012; Asch, 1994), our empirical results from the Philippines say otherwise. This can be explained by distinguishing the direct and indirect effect of labor emigration on employment and production. On one hand, the direct effect of labor emigration on production is through a reduction in labor supply. On the other hand, the indirect effect of labor emigration on employment is through remittances via an increase in the reservation wage and increase demand for education of those who receives remittances. These result to lower labor force participation. Hence, lower employment reduces production in the agricultural sector. Eventually, reduced production will decrease both labor demand and wages.

The impact of remittances on production is statistically insignificant in the capital-intensive sector. Since the manufacturing sector is capital-intensive, the change in employment is not a sufficient factor to increase output. It must be accompanied by a significant increase in capital to warrant an increase in output. However, the impact of remittances on production in the labor-intensive sector is negative and statistically significant. Consistent with theory and literature particularly Wonyra and Ametoglo (2020) and Al Mamun et al. (2016, 2015), this is due to the reduction in employment given increased remittances.

Like our results in Table 8, consistent with Glotis and Mylonas (2022) and Yu et al. (2021), our results on the impact of wages on employment in the capital- and labor-intensive sector are statistically significant yet ambiguous as evidenced by the varying direction of impact.

Meanwhile, employment has a positive and statistically significant impact on production in the capital-intensive sector, as demand for manufactured goods increase (de Vera, 2022). However, employment has a negative and statistically significant impact on production in the labor-intensive sector, consistent with Ioan (2014). This can be traced to the low economic performance of the Philippine agricultural sector (Galang, 2019).

From Tables 8 and 9, we can already see results that support and challenge theory and scholarly literature. For instance, in Table 9, the negative effect of remittances on employment lower production in agriculture, which is consistent with theory. From Table 8, although deployment affects agricultural production negatively, the sending of remittances may reduce employment and production in agriculture that may be construed as non-inclusive. Hence, there is evidence that remittances are not inclusive for the labor-intensive sector because it reduces employment due to the enhanced reservation wage of workers receiving remittances. The decline in employment will reduce production in the agricultural sector. The reduced agricultural output will decrease labor demand, which in turn will reduce wages.

Table 10 presents the VAR estimates of Equation 4 showing the impact of FDI flows on wages, employment, and production in the capital- and labor-intensive sectors of the Philippines.

Table 10: Summary VAR(p) Results for Equation 4

Ca	Capital-intensive sector				Labor-intensive sector				
Impulse	Response	Coefficien	p	Impulse	Response	Coefficien	p		
L1.D1.ln <i>FDIF</i>		4.268616	0.043	L1.D1.ln <i>FDIF</i>		6161584	0.644		
L_t		4.200010	0 592	L_t		2.80959	0		
L2.D1.ln $FDIF$ L_t	D1. <i>WMNF</i>	-1.157731	0.582	L2.D1.ln $FDIF$ L_t	D1 W/CD1	2.80939	0.021		
L3.D1.ln <i>FDIF</i>	G_t	3.913777	0.015	L3.D1.ln <i>FDIF</i>	$D1.WAGRI_t$	1.351671	0.197		
L_t L4.D1.ln $FDIF$			0 0.051	L_t L4.D1.ln <i>FDIF</i>		7828653	0 0.501		
L_t		3.262013	0	L_t		.7020033	0		
$L1.D1.lnFDIF$ L_t		143675.3	0.020	L1.D1.ln $FDIF$ L_t		-296767.7	0.003		
L_t L2.D1.ln $FDIF$		1461575	0.018	L_t L2.D1.ln $FDIF$		-116368.6	0.195		
L_t	D1.EMNFG	146157.5	0	L_t	$D1.EAGRI_t$	0.500 (00	0		
L3.D1.ln $FDIF$ L_t	t	88026.75	0.063	L3.D1.ln $FDIF$ L_t		-85226.83	0.271		
L4.D1.ln <i>FDIF</i>		86623.5	0.078	L4.D1.ln <i>FDIF</i>		64740.26	0.451		
L_t L1.D1.ln <i>FDIF</i>		00023.3	0.000	L_t L1.D1.ln <i>FDIF</i>		228206.1	0.795		
L_{t}	D1. <i>PMNFG</i>	1.35e+07	0.000	L_t	D1.PAGRI _t	220200.1	0.793		
L2.D1.ln <i>FDIF</i>		4225096	0.206	L2.D1.ln <i>FDIF</i>		-1283553	0.110		
L_t L3.D1.ln $FDIF$			0 0.127	L_t L3.D1.ln <i>FDIF</i>		532704.3	0 0.441		
L_t		3909871	0	L_t			0		
L4.D1.ln <i>FDIF</i>		1262684	0.634	L4.D1.ln <i>FDIF</i>		-2431896	0.002		
$\frac{L_t}{\text{L1.D1.}WMNF}$		21269 25	0.000	L_t		-66618.18	0.000		
G_t		21368.35	0	$L1.D1.WAGRI_t$	D1.EAGRI _t	25020.06	0		
L2.D1. $WMNF$ G_t	D1. <i>EMNFG</i>	-2767.643	0.659 0	$L2.D1.WAGRI_t$		-25828.96	0.217 0		
L3.D1.WMNF	t	16285.12	0.002	L3.D1. $WAGRI_t$		34825.35	0.099		
G_t L4.D1. $WMNF$			0 0.001			46299.11	0 0.073		
G_t		-21446.88	0.001	$L4.D1.WAGRI_t$			0		
L1.D1.EMNFG		-19.45752	0.175	L1.D1. $EAGRI_t$		-7.799005	0.000		
L2.D1.EMNFG		2 961572	0.857	I 2 D1 EACDI		2.960251	0.139		
t a D1 Flower	D1.PMNFG	-2.861573	0	$L2.D1.EAGRI_t$	$D1.PAGRI_t$	0.70402	0		
L3.D1.EMNFG	t	-18.29095	0.239	L3.D1. $EAGRI_t$	•	-8.79403	0.000		
L4.D1.EMNFG		-23.46919	0.126	$L4.D1.EAGRI_t$		2.662858	0.195		
t L1.D1. <i>WMNF</i>			0.832	21.21.270101		.005753	0.849		
G_t		.0048315	0.832	$L1.D1.WAGRI_t$.003/33	0.849		
L2.D1.WMNF	D11 EDIE	0157554	0.544	L2.D1. $WAGRI_t$	D11 EDE	0044584	0.909		
G_t L3.D1. <i>WMNF</i>	$\mathrm{D}1.\mathrm{ln}FDIF$ L_t		0 0.859		${ m D1.ln}FDIF \ L_t$.0000598	0 0.999		
G_t	<i>i</i>	.0037828	0	L3.D1. $WAGRI_t$	ے,		0		
L4.D1. <i>WMNF</i>		.0124362	0.650 0	L4.D1.WAGRI _t		.0640808	0.182		
G_t			U				U		

$L1.D1.EMNFG_t$			0.8910	$L1.D1.EAGRI_t$		-3.14e-07	0.3900
L2.D1. $EMNFG_t$	D1 la EDIEI	7.49e-07	0.5370	L2.D1. $EAGRI_t$	D1 la EDIEI	-3.77e-07	0.3650
L3.D1. $EMNFG_t$		9.53e-07	0.4230	L2.D1. <i>EAGRI</i> _t L3.D1. <i>EAGRI</i> _t		1.35e-06	0.0000
$L4.D1.EMNFG_t$		-2.39e-07	0.8390	$L4.D1.EAGRI_t$		4.47e-07	0.2960

Note: See Appendix 5.1 and Appendix 5.2 for the full VAR(p) estimated results; shaded areas indicate statistical significance at least at the 10% alpha.

Source: Computed by the authors.

There is evidence that **FDI flows have a positive and statistically significant impact on wages in both capital- and labor-intensive sectors**. This is consistent with theory stating that FDI flows will increase wages because of an increase in labor demand as the production of labor is enhanced with more productive inputs. This is also consistent with the findings of Saucedo et al. (2020) and Arnal and Hijzen (2008).

FDI flows have also demonstrated a positive and statistically significant relationship with employment in the capital-intensive sector. This is consistent with theory stating that FDI flows create positive effect in both low- and high-skilled employment. This is also aligned with the results of Kang and Martinez-Vasquez (2022); Pieńkowski (2020); Saucedo et al. (2020); Estrin (2017); Brincikova and Darmo (2014); and Rizvi and Nishat (2009). This can also be explained by the fact that most FDI flows in the Philippines are directed to the manufacturing sector (Medina, 2023; Cuaresma, 2019). In fact, according to Avrett (2023), "majority of FDI equity investments in 2022 targeted the manufacturing, information and communications technology (ICT), financial services, and real estate sectors" (para. 1).

However, FDI flows manifested a negative and statistically significant relationship with employment in the labor-intensive sector. This is because labor inputs have become more expensive with higher wages. While this is not consistent with theory and scholarly literature, it can be traced to the fact that most FDI flows to the Philippines go to capital-intensive sectors (Medina, 2023; Cuaresma, 2019) that increases its production. Because the labor-intensive sectors are protected from foreign participation (Laforga, 2021; Talavera, 2021), the implications of the Lewis' model of structural change (Todaro & Smith, 2014) sets in wherein surplus labor from the labor-intensive sector moves to the capital-intensive sector due to better wages and living standards. Hence, production in the labor-intensive sector also declines.

It is also important to note that the positive impacts of FDI flows is more pronounced in the capital-intensive sector. FDI flows evidently increase wages, employment, and production in the capital-intensive sector. This is due to the relative size of foreign firms who are usually larger, more capital- and input-intensive. They are also more integrated with the foreign markets than domestic firms. Thus, their greater sophistication increases labor productivity and production (e.g., export performance) (Desbordes & Franssen, 2019). However, this is not the case for the labor-intensive sector, with certain lags indicating statistically insignificant effect. This indicates that at certain points in time, changes on such variables in the agricultural sector may not be an automatic consequence of FDI (Blomström, 2001) and delayed effects also play a role. Effects of FDI flows take time to manifest in the host economy. The limited capabilities, weak competitiveness, and inability to absorb technology by the agricultural sector in the Philippines further slows down the expected spillover effects of FDI flows (Aldaba, 2022).

Worse, even **FDI** appears to be damaging for agriculture because it reduces not only employment but also production. According to Loungani and Razin (2001), "FDI is not only a transfer of ownership from domestic to foreign residents but also a mechanism that makes it possible for foreign investors to exercise management and control over host country firms"

(para. 17). Thus, transfer of control is not necessarily beneficial for the FDI-recipient economy due to country-specific circumstances, issues of adverse selection, and excessive leverage.

Like results in Tables 8 and 9, consistent with Glotis and Mylonas (2022) and Yu et al. (2021), the impact of wages on employment in the capital- and labor-intensive sectors is statistically significant yet ambiguous as evidenced by the varying direction of impact.

Meanwhile, **employment has no statistically significant impact on production in the capital-intensive sector**. Like in Table 8, this is because the positive impact of wages on employment is weakened in manufacturing with mixed results. Also, the manufacturing sector requires more capital to increase its production. Hence, production directly benefits from FDI flows and not necessarily through employment. That is, without capital to work on, employment alone will not increase manufacturing output.

However, employment has a negative and statistically significant impact on production in the labor-intensive sector. Consistent with theory, production in agriculture will decrease with a decline in employment. This is also aligned with Ioan (2014) wherein the low economic performance of the Philippine agricultural sector (Galang, 2019) explains low production.

Table 11 presents the VAR estimates of Equation 5 indicating the feedback effects between FDI flows and production in the capital- and labor-intensive sectors of the Philippines.

Table 11: Summary VAR(p) Results for Equation 5

C	Capital-intensive sector				Labor-intensive sector				
Impulse	Response	Coefficien t	p	Impulse	Response	Coefficien t	p		
$L1.D1.PMNF$ G_t		-3.02e-10	0.970 0	L1.D1. $PAGR$ I_t		1.68e-08	0.620		
L1.D1. $PMNF$ G_t	D1.ln <i>FDIFL</i>	2.51e-08	0.197 0	L2.D1. $PAGR$ I_t	D1.ln <i>FDIFL</i>	-3.26e-08	0.291 0		
L1.D1. $PMNF$ G_t	t	-1.36e-08	0.396 0	L1.D1. $PAGR$ I_t	t	4.08e-08	0.204 0		
L1.D1. $PMNF$ G_t		-9.73e-09	0.670 0	L2.D1. $PAGR$ I_t		-1.69e-08	0.632 0		

Note: See Appendix 5.1, Appendix 5.2, Appendix 6.1 (reported above), and Appendix 6.2 (reported above) for the full VAR(p) estimated results; shaded areas indicate statistical significance at least at the 10% alpha. Source: Computed by the authors.

Following results in Table 10, production in the capital-intensive sector has a positive response to FDI flows while production in the labor-intensive sector has a negative response to FDI flows, the feedback effect shows statistical insignificance. Production in the capital- and labor-intensive sectors does not explain FDI flows. However, Santos (2023); Jimenez et al. (2021); and Jung (2020) found that production positively impacts FDI flows.

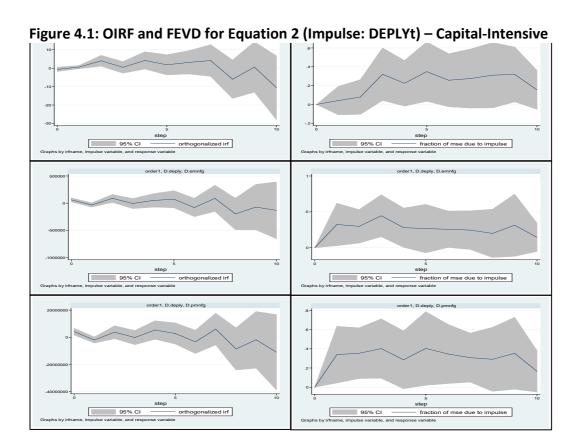
Our results are counterintuitive with theory and literature because from Table 10, wage and employment in the capital-intensive sector do not significantly affect FDI flows. In the labor-intensive sector, employment has a positive yet negligible effect on FDI flows. This can be traced to the fact that developing economies like the Philippines, despite having relaxed Constitutional constraints on foreign entry, still has economic barriers to FDI and risks that discourage entry (Diola, 2022). That is, FDI flows are not automatic consequences of production, wages, or employment levels but more of the state of investment landscape.

Beyond production, the Philippines must enhance its overall investment climate through resilient macroeconomic fundamentals, robust and investment grade sovereign credit ratings, stable political situation, among others.

While not measured in our VAR model, the Philippines has been making strides to enhance its investment climate through the following initiatives: (1) enacted the Ease of Doing Business Law that aims to entice investors to setup businesses in the Philippines by expediting business and non-business transactions; (2) amended the Public Services Act, Retail Trade Liberalization Act, and Foreign Investment Act that addressed foreign ownership limitations and high capitalization requirements that has constrained investment in many critical sectors; (3) continued aggressive investment in infrastructure spending to enhance mobility and connectivity in the economy; and (4) strengthened its commitments in the ASEAN Economic Community (AEC) and ratified its membership in bigger regional trading bloc like the Regional Comprehensive Economic Partnership (RCEP). All of which creates a conducive environment for foreign investors that will pull them to invest in the Philippines.

4.2.2. OIRF and FEVD Results

FEVD and OIRF for Equation 2. Figures 4a and 4b illustrate the OIRFs (left panels) and FEVDs (right panels) for Equation 2. Figure 4a shows the response of $WMNFG_t$, $EMNFG_t$, and $EMNFG_t$ to impulse emanating from $EMNFG_t$. Meanwhile, Figure 4b shows the response of $EMNFG_t$, and $EMNFG_t$, and $EMNFG_t$ to impulse emanating from $EMNFG_t$.


- On one hand, in Figure 4a (first row, left panel), the OIRF illustrates the response of wages in the manufacturing sector to impulses from deployment. With a positive shock from deployment at t = 0, wages would respond positively until about until t = 8 when response would be negative. Impulses are not fully absorbed by the economy and reaction does not completely dissipate. Holding other factors constant, the impact of deployment on wages in the manufacturing sector is mostly positive and persistent in succeeding periods.
- In Figure 4a (first row, right panel), the FEVD shows that variations (movements) in wages in the manufacturing sector caused by deployment start instantaneously and sharply at t = 0 with an upward yet steep for succeeding periods. That is, variations to wages in the manufacturing sector attributed to deployment are consistently positive and happen immediately.

The abovementioned findings are supportive of our VAR estimates that deployment increases wages in the capital-intensive sector. Because deployment reduces labor supply given domestic demand for labor, it will trigger a wage increase in both sectors.

• In Figure 4a (second row, left panel), the OIRF illustrates the response of employment in the manufacturing sector to impulses from deployment. With a positive shock from deployment at t = 0, employment responds ambiguously oscillating between positive and negative, and persists across time. Impulses are not fully absorbed by the economy and reaction does not completely dissipate. Holding other factors constant, the impact of deployment on employment in the manufacturing sector is mostly positive and persistent in succeeding periods.

• In Figure 4a (second row, right panel), the FEVD shows that variations in employment in the manufacturing sector caused by deployment start instantaneously and sharply at t = 0 with an upward and steady trajectory for succeeding periods. That is, variations in employment in the manufacturing sector attributed to deployment are consistently positive and happen immediately.

The abovementioned findings are supportive of our VAR estimates that deployment increases employment in the capital-intensive sector. A decline in labor supply due to deployment will increase employment in the capital-intensive sector under the assumption that emigrating labor is from the labor-intensive sector.

- In Figure 4a (third row, left panel), the OIRF illustrates the response of production in the manufacturing sector to impulses from deployment. With a positive shock from deployment at t = 0, the response of production starts positive then oscillates between positive and negative until it settles in the negative in latter periods. Impulses are not fully absorbed by the economy and reactions do not dissipate. Holding other factors constant, the impact of deployment on production is ambiguous and persistent in succeeding periods.
- In Figure 4a (third row, right panel), the FEVD shows that variations in production in the manufacturing sector caused by deployment start instantaneously and sharply at t = 0 with an upward yet steady trajectory for succeeding periods. That is, variations to production in the manufacturing sector attributed to deployment are consistently positive and happen immediately.

The abovementioned findings supports the statistical insignificance of the relationship between deployment and production in our VAR results. We emphasize that because the manufacturing sector is capital-intensive, the increase in employment must be accompanied by a significant increase in capital to warrant an increase in production.

- On the other hand, in Figure 4b (first row, left panel), the OIRF illustrates the response of wages in the agricultural sector to impulses from deployment. With a positive shock from deployment at t = 0, the response of wages is consistently positive and persistent across time. Impulses are not fully absorbed by the economy and reactions do not dissipate. Holding other factors constant, the impact of deployment on wages in the agricultural sector is consistently positive and persistent in succeeding periods.
- In Figure 4b (first row, right panel), the FEVD shows that variations in wages in the agricultural sector caused by deployment also start instantaneously and becomes steeper at succeeding periods. That is, variations to wages in the agricultural sector attributed to deployment happen immediately, slowly gain steam, and steeply rise in succeeding periods.

The abovementioned findings are supportive of our VAR estimates that **deployment also** increases wages in the labor-intensive sector. Because deployment reduces labor supply given domestic demand for labor, it will trigger a wage increase in both sectors. Indeed, labor emigration has economic and financial benefits to those left behind.

- In Figure 4b (second row, left panel), the OIRF illustrates the response of employment in the agricultural sector to impulses from deployment. With a positive shock from deployment at t = 0, the response of employment is mostly negative and persists over time. Impulses are not fully absorbed by the economy and reactions do not dissipate. Holding other factors constant, the impact of deployment on employment in the agricultural sector is mostly negative and persistent in succeeding periods.
- In Figure 4b (second row, right panel), the FEVD shows that variations in employment in the agricultural sector caused by deployment start instantaneously at t = 0 with an upward yet flat trajectory for succeeding periods. That is, variations to employment in the agricultural sector attributed to deployment are instantaneous and consistently positive.

The abovementioned findings are supportive of the sign of our VAR estimates that deployment reduces employment in the labor-intensive sector, albeit statistically insignificant. This is because the positive effect of an increase in wage rate on employment is offset by the reduction of labor due to deployment.

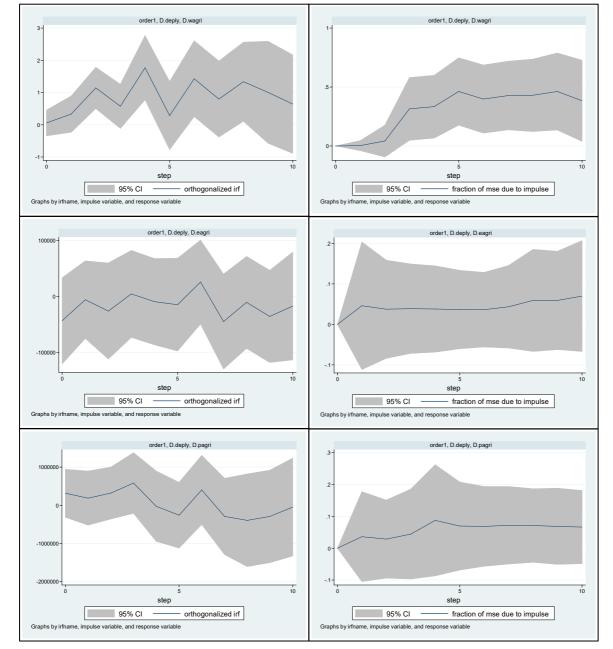


Figure 4.2: OIRF and FEVD for Equation 2 (Impulse: DEPLYt) – Labor-Intensive

- In Figure 4b (third row, left panel), the OIRF illustrates the response of production in the agricultural sector to impulses from deployment. With a positive shock from deployment at t = 0, the response of production in the agricultural sector is mostly positive despite hovering around the positive and negative space across time. Impulses from deployment are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of deployment on production in the agricultural sector is mostly positive and persistent in succeeding periods.
- In Figure 4b (third row, right panel), the FEVD shows that variations in production in the agricultural sector caused by deployment start instantaneously and flatly at t=0 with an upward and steep trajectory for succeeding periods. That is, variations to production in the agricultural sector attributed to deployment are instantaneous and consistently positive.

The abovementioned findings are supportive of our VAR estimates indicating a positive statistically significant relationship between deployment and production in the agricultural sector. For a stronger response, production growth driven by greater employment should involve a high economic performance, expressed mainly by the high level of work performance and development of the sector.

FEVD and OIRF for Equation 3. Figures 5a and 5b illustrate the OIRFs (left panels) and FEVDs (right panels) for Equation 3. Figure 5a shows the response of $WMNFG_t$, $EMNFG_t$, and $EMIT_t$. Meanwhile, Figure 5b shows the response of $EMIT_t$. Was an $EMIT_t$. Was an $EMIT_t$.

order1, D.Inremit, D.wmnfa order1. D.Inremit. D.wmnfa orthogonalized irf fraction of mse due to impulse 95% CI 95% CI 20000 95% CI orthogonalized irf 95% CI fraction of mse due to impulse Graphs by irfname, impulse variable, and response variable order1, D.Inremit, D.pmnfg rder1, D.Inremit, D.pmnfg 1000000 orthogonalized irf 95% CI 95% CI fraction of mse due to impulse

Figure 5.1: OIRF and FEVD for Equation 3 (Impulse: InREMITt) - Capital-Intensive

- On one hand, in Figure 5a (first row, left panel), the OIRF illustrates the response of wages in the manufacturing sector to impulses from remittances. With a positive shock from remittances at t = 0, wages respond flatly across time except in the latter period where responses are more pronounced at the negative. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of remittances on wages in the manufacturing sector is negative, which persists in the succeeding periods.
- In Figure 5a (first row, right panel), the FEVD shows that variations in wages in the manufacturing sector caused by remittances start instantaneously and sharply at t = 0 with a positive yet flat trajectory for succeeding periods. That is, variations to wages in the manufacturing sector attributed to remittances is consistently positive, instantaneous, and relatively flat in succeeding time periods.

The abovementioned findings are supportive of our VAR estimates that remittances have a negative relationship with wages. While remittances reduce overall unemployment and inequality, average wage declines because the benefits of remittances mostly accrue to lowerwage, lower-productivity non-tradable industries at the expense of high-productivity, highwage tradable sectors.

- In Figure 5a (second row, left panel), the OIRF illustrates the response of employment in the manufacturing sector to impulses from remittances. With a positive shock from remittances at t = 0, the response of employment in the manufacturing sector is mostly negative and persists over time. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of remittances on employment is negative and is persistent in succeeding periods.
- In Figure 5a (second row, right panel), the FEVD shows that variations in employment in the manufacturing sector caused by remittances start instantaneously and sharply at t = 0 with an upward yet slow and flat trajectory for succeeding periods. That is, variations to employment in the manufacturing sector attributed to remittances are consistently positive and instantaneous.

The abovementioned findings are **supportive of our VAR estimates that remittances reduce employment in the capital-intensive sector**. This can be traced to the distortions caused by remittances in increasing reservation wage and demand for education resulting to lower labor force participation.

- In Figure 5a (third row, left panel), the OIRF illustrates the response of production in the manufacturing sector to impulses from remittances. With a positive shock from remittances at t=0, the response of production in the manufacturing sector is ambiguous oscillating between the positive and negative space over time. Impulses from remittances are not absorbed by the economy and response do not dissipate. Holding other factors constant, the impact of remittances on production is ambiguous and persistent in the succeeding periods.
- In Figure 5a (third row, right panel), the FEVD shows that variations in production in the manufacturing sector caused by remittances is flat at t = 0 with a sudden upward and steep trajectory for succeeding periods, which would eventually settle at a higher level. That is, variations to production in the manufacturing sector attributed to remittances are consistently positive and are manifested with a delay.

The abovementioned findings are supportive of our VAR estimates that the relationship between remittances and production is statistically insignificant. While remittances can enhance the welfare of households left behind and boost growth rates of remittance-recipient countries, it also creates a culture of dependency that reduces labor force participation in remittance-recipient economies that slows down production.

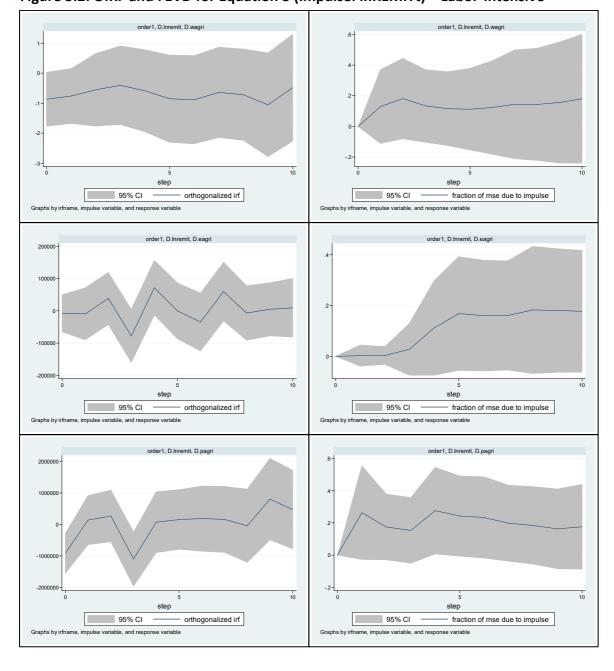


Figure 5.2: OIRF and FEVD for Equation 3 (Impulse: InREMITt) - Labor-Intensive

On the other hand, in Figure 5b (first row, left panel), the OIRF illustrates the response of wages in the agricultural sector to impulses from remittances. While a positive shock from remittances at t = 0, the response of wages in the agricultural sector is negative and is consistently negative and persistent across time. Impulses are not fully absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of remittances on wages is consistently negative, which persists in succeeding periods.

• In Figure 5b (first row, right panel), the FEVD shows that variations in wages in the agricultural sector caused by remittances start instantaneously and sharply at t = 0 then increase at succeeding periods. That is, variations to wages in the agricultural sector attributed to remittances are consistently positive and instantaneous.

The abovementioned findings may be supportive of our VAR estimates that remittances have a negative impact on wages in the agricultural sector. Despite the capacity of remittances to augment people's income earning capabilities, average wage declines.

- In Figure 5b (second row, left panel), the OIRF illustrates the response of employment in the agricultural sector to impulses from remittances. With a positive shock from remittances at t=0, the response of employment in the agricultural sector starts negatively, oscillates between negative and positive, remains mostly at the negative until latter periods. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of remittances on employment is negative and is persistent in succeeding periods.
- In Figure 5b (second row, right panel), the FEVD shows that variations in employment in the agricultural sector caused by remittances start instantaneously and positively at t = 0 with a steeply upward trajectory that stabilizes in succeeding periods. That is, variations in employment in the agricultural sector attributed to remittances are consistently positive and instantaneous.

The abovementioned findings are supportive of our VAR estimates that remittances reduce employment in the labor-intensive sector. This can be traced to the distortions caused by remittances in increasing reservation wage and demand for education resulting to lower labor force participation.

- In Figure 5b (third row, left panel), the OIRF illustrates the response of production in the agricultural sector to impulses from remittances. With a positive shock from remittances at t = 0, the response of production in the agricultural sector is mostly negative across time. At initial periods, the response of production to shocks from remittances is negative then becomes positive then shifts back to negative only to recover at latter periods. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of remittances on production is mostly negative and persistent in succeeding periods.
- In Figure 5b (third row, right panel), the FEVD shows that variations in production in the agricultural sector caused by remittances is positive across time periods. That is, variations to production in the agricultural sector attributed to remittances are consistently positive and instantaneous.

The abovementioned findings are supportive of our VAR estimates that remittances reduces production in the labor-intensive sector. While remittances can enhance the welfare of households left behind and boost growth rates of remittance-recipient countries, it also creates a culture of dependency that reduces labor force participation in remittance-recipient economies that slows down production.

FEVD and OIRF for Equation 4. Figures 6a and 6b illustrate the OIRFs (left panels) and FEVDs (right panels) for Equation 3. Figure 6a shows the response of $WMNFG_t$, $EMNFG_t$, and $PMNFG_t$ to impulse emanating from $lnFDIFL_t$. Meanwhile, Figure 6b shows the response of $WAGRI_t$, $EAGRI_t$, and $PAGRI_t$ to impulse emanating from $lnFDIFL_t$.

- On one hand, in Figure 6a (first row, left panel), the OIRF illustrates the response of wages in the manufacturing sector to impulses from FDI flows. With a positive shock from FDI flows at t = 0, the response of wages is positive and persists across time but shifts to negative in latter periods. Holding other factors constant, the impact of FDI flows on wages in the manufacturing sector is positive and persistent across time.
- In Figure 6a (first row, right panel), the FEVD shows that variations in wages in the manufacturing sector caused by FDI flows start slow and flat at t = 0. This slow and flat trajectory of variations persist for succeeding periods. That is, variations to wages in the manufacturing sector attributed to FDI flows is instantaneous yet slow, consistently positive, and stabilizes in succeeding time periods.

The abovementioned findings support our VAR estimates that FDI flows have a positive and statistically significant impact on wages. FDI flows will increase wages because of an increase in labor demand as the production of labor is enhanced with more productive inputs.

order1, D.Infdifl, D.wmnfg order1, D.Infdifl, D.wmnfg step 95% CI 95% CI orthogonalized irf fraction of mse due to impulse order1, D.Infdifl, D.emnfg order1, D.Infdifl, D.emnfg 200000 100000 -100000 95% CI orthogonalized irf 95% CI fraction of mse due to impulse order1, D.Infdifl, D.pmnfg order1, D.Infdifl, D.pmnfg step step 95% CI orthogonalized irf 95% CI fraction of mse due to impulse Graphs by irfname, impulse variable, and response variable Graphs by irfname, impulse variable, and response variable

Figure 6.1: OIRF and FEVD for Equation 4 (Impulse: InFDIFLt) – Capital-Intensive

- In Figure 6a (second row, left panel), the OIRF illustrates the response of employment in the manufacturing sector to impulses from remittances. With a positive shock from FDI flows at t = 0, the response of employment in the manufacturing sector is consistently positive and declines across time. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of FDI flows on employment is positive but decline as time progresses.
- In Figure 6a (second row, right panel), the FEVD shows that variations in employment in the manufacturing sector caused by FDI flows start steep at t = 0 with an upward yet flat trajectory for succeeding periods. That is, variations to employment in the manufacturing sector attributed to remittances are slow yet consistently positive, and instantaneous.

The abovementioned findings are supportive of our VAR estimates indicating a positive and statistically significant impact of FDI flows on employment in the capital-intensive sector. FDI flows do have a positive contribution to employment. This is because FDI flows facilitate technology transfer through new capital inputs generating employment opportunities accompanied by training that contributes to human capital development in the host country (Loungani & Razin, 2001). However, our results suggest that this impact dissipates thereby necessitating for sustained flow of FDIs so that continuous development can be ensued.

- In Figure 6a (third row, left panel), the OIRF illustrates the response of production in the manufacturing sector to impulses from FDI flows. With a positive shock from FDI flows at t = 0, the response of production in the manufacturing sector is mostly positive at earlier periods then shift to negative in latter periods. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of FDI flows on production is positive and persistent through time.
- In Figure 6a (third row, right panel), the FEVD shows that variations in production in the manufacturing sector caused by FDI flows is slow at t = 0 with a slight upward trajectory that remains stable for succeeding periods. That is, variations to production in the manufacturing sector attributed to FDI flows is consistently positive and constant.

The abovementioned findings may be supportive of our VAR estimates that FDI flows have a positive impact on production in the capital-intensive sector. This is due to the relative size of foreign firms who are usually larger, more capital- and input-intensive, and more integrated with the foreign markets than domestic firms allowing them to increase production.

- On the other hand, in Figure 6b (first row, left panel), the OIRF illustrates the response of wages in the agricultural sector to impulses from FDI flows. While a positive shock from FDI flows at t = 0, the response of wages in the agricultural sector is heading towards positive, which it maintains across time. Impulses are not fully absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of FDI flows on wages is mostly positive, which persists in succeeding periods.
- In Figure 6b (first row, right panel), the FEVD shows that variations in wages in the agricultural sector caused by FDI flows start instantaneously and sharply at t=0 then flattens at succeeding periods. That is, variations to wages in the agricultural sector attributed to FDI flows are weak but consistently positive and instantaneous, then stagnates.

The abovementioned findings are supportive of our VAR estimates that FDI flows have a positive and significant impact on wages in the agricultural sector. FDI flows will increase wages because of an increase in labor demand as the production of labor is enhanced with more productive inputs.

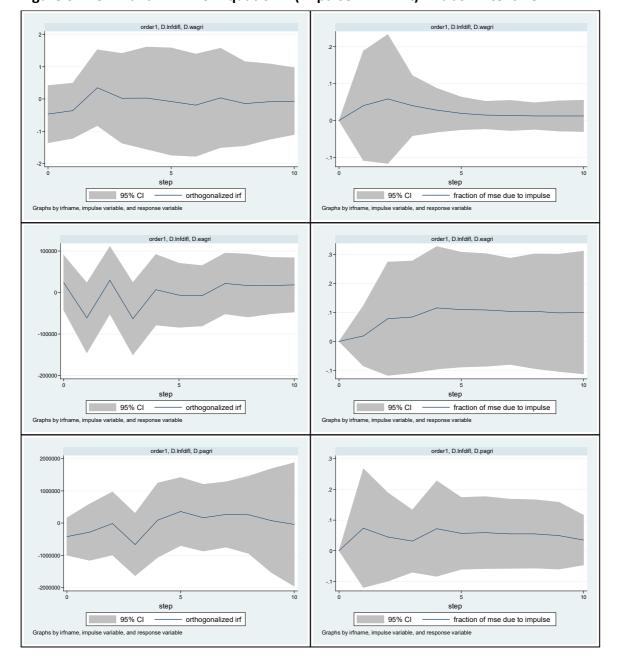


Figure 6.2: OIRF and FEVD for Equation 4 (Impulse: InFDIFLt) - Labor-Intensive

- In Figure 6b (second row, left panel), the OIRF illustrates the response of employment in the agricultural sector to impulses from FDI flows. With a positive shock from FDI flows at t = 0, the response of employment in the agricultural sector is mostly negative until the latter periods. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of FDI flows on employment is negative and is persistent in succeeding periods.
- In Figure 6b (second row, right panel), the FEVD shows that variations in employment in the agricultural sector caused by FDI flows start instantaneously and positively at t

= 0 with an upward yet slow trajectory for succeeding periods. That is, variations to employment in the agricultural sector attributed to FDI flows are slow yet consistently positive and instantaneous.

The abovementioned findings are supportive of our VAR estimates that FDI flows reduce employment in the labor-intensive sector. This can be traced to the fact that most FDI flows go to capital-intensive sectors and because the labor-intensive sectors are protected from foreign participation.

- In Figure 6b (third row, left panel), the OIRF illustrates the response of production in the agricultural sector to impulses from FDI flows. With a positive shock from FDI flows at t = 0, the response of production in the agricultural sector is mostly negative across time. Impulses are not absorbed by the economy and responses do not dissipate. Holding other factors constant, the impact of FDI flows on production is negative and persistent in succeeding periods.
- In Figure 6b (third row, right panel), the FEVD shows that variations in production in the agricultural sector caused by FDI flows is positive across time periods. That is, variations to production in the agricultural sector attributed to FDI flows are consistently positive and instantaneous.

The abovementioned findings are supportive of our VAR estimates that FDI flows have a negative and statistically significant impact on production in the labor-intensive sector. FDI flows are not necessarily beneficial for the labor-intensive sector because of specific circumstances, issues of adverse selection, and excessive leverage.

FEVD and OIRF for Equation 5. Figures 7a and 7b illustrate the OIRFs (left panels) and FEVDs (right panels) for Equation 5. Figure 7a shows the response of $\ln FDIFL_t$ to impulse emanating from $PMNFG_t$ (capital-intensive sector). Meanwhile, Figure 7b shows the response of $\ln FDIFL_t$ to impulse emanating from $PAGRI_t$ (labor-intensive sector).

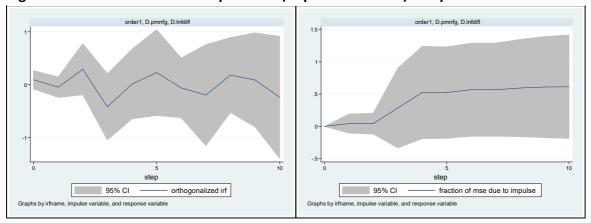


Figure 7.1: OIRF and FEVD for Equation 4 (Impulse: PMNFGt) - Capital-Intensive

- In Figure 7a (left panel), the OIRF illustrates the response of FDI flows to impulses from production in the manufacturing sector. With a positive shock from production in the manufacturing sector at t = 0, the response of FDI flows starts positive but shifts towards negative then positive. Impulses are not absorbed by the economy and
- responses dissipate at latter periods. Holding other factors constant, the impact of production in the manufacturing sector on FDI flows is ambiguous and persistent across time.

• In Figure 7a (right panel), the FEVD shows that variations in FDI flows caused by production in the manufacturing sector start slow and flat at t = 0. This slow and flat trajectory of variations persist for succeeding periods. That is, variations to FDI flows attributed to production in the manufacturing sector is instantaneous yet slow, consistently positive, and stabilizes in succeeding time periods.

The abovementioned findings are supportive of our VAR estimates that production in the manufacturing sector has a statistically insignificant impact on FDI flows. FDI flows are not automatic consequences of production alone but more of the state of investment landscape in an economy. Beyond production, the Philippines must enhance its overall investment climate through resilient macroeconomic fundamentals, robust and investment grade sovereign credit ratings, stable political situation, among others.

- In Figure 7b (left panel), the OIRF illustrates the response of FDI flows to impulses from production in the agricultural sector. With a positive shock from production in the agricultural sector at t = 0, the response of FDI flows spans both positive and negative until impulses are absorbed by the economy and responses dissipate at latter periods. Holding other factors constant, the impact of production in the agricultural sector on FDI flows is ambiguous but is absorbed by the economy.
- In Figure 7b (right panel), the FEVD shows that variations in FDI flows caused by production in the agricultural start small, slow, and flat at t = 0. Variations are close too small and close to zero indicating insignificant movements. That is, variations to FDI flows attributed to production in the agricultural sector is instantaneous yet slow, weak, and flatten in succeeding time periods.

The abovementioned findings are supportive of our VAR estimates that production in the agricultural sector has a statistically insignificant impact on FDI flows. FDI flows are not automatic outcomes of production alone but more of the state of investment landscape. Beyond production, the Philippines must enhance its overall investment climate through resilient macroeconomic fundamentals, robust and investment grade sovereign credit ratings, stable political situation, among others.

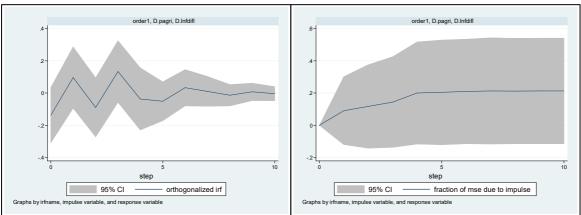


Figure 7.2: OIRF and FEVD for Equation 4 (Impulse: PAGRIt) – Labor-Intensive

4.3. Key Findings

We have seen mixed results from our VAR, OIRF, and FEVD estimates – results that are consistent with scholarly literature and counterintuitive findings. Our results are summarized in Table 12a for capital-intensive sector and Table 12b for labor-intensive sector.

Table 12: Summary of Empirical Results – Capital-Intensive Sector

		Response of	K	ey Findi	ngs		Consistent	Consistent
Equation	Impulse	Capital- Intensive Sector	VAR	OIRF	FEVD	Overall Remarks	with theory	with literature
		Wages	+	+	+	Deployment increases wages.	√	√
	Deployment	Employment	+	+	+	Deployment increases employment.	√	√
2		Production	0	+/-	+	Deployment has no significant impact on production.		
	Wages	Employment	+/-	+/-	+	Wages have an ambiguous impact on employment.		✓
- :	Employment	Production	0	+/-	+	Employment has no significant impact on production.		
	Remittances	Wages	-	-	+	Remittances reduce wages.		✓
		Employment	-	-	+	Remittances reduce employment.		√
3		Remittances	Production	0	+/-	+	Remittances have no significant impact on production.	
	Wages	Employment	+/-	+/-	+	Wages have an ambiguous impact on employment.		✓
	Employment	Production	+	+	+	Employment has positive impact on production.	✓	✓
4	FDI flows	Wages	+	+	+	FDI flows increase wages.	√	✓
		Employment	+	+	+	FDI flows increase employment.	√	✓
		Production	+	+	+	FDI flows increase production.	✓	✓

	Wages	Employment	+/-	+/-	+	Wages have an ambiguous impact on employment	✓
	Employment	Production	0	+/-	+	Employment has no significant impact on production.	✓
	Wages	FDI flows	0	+/-	+	Wages has no significant impact on FDI flows.	
	Employment	FDI flows	0	+/-	+	Employment has no significant impact on FDI flows.	
5	Production	FDI flows	0	+/-	+	Production has no significant impact on FDI flows.	√

Note: (+) in VAR and in OIRF indicates a significantly positive relationship between the impulse variable and response variable; (–) in VAR and in OIRF indicates a significantly negative relationship between the impulse variable and response variable; (0) in VAR and in OIRF indicates insignificant relationship between the impulse variable and response variable; (+/–) in VAR and in OIRF indicates ambiguous relationship between the impulse variable and response variable; (+) in FEVD indicates that the direction of relationship between the impulse variable and response variables is reinforced.

Source: Compiled by the authors.

Table 13: Summary of Empirical Results – Labor-Intensive Sector

		Response of	K	ey Findi	ngs		Consistent	
Equation	Impulse	Labor- Intensive Sector	VAR	OIRF	FEVD	Overall Remarks	Consistent with theory	with literature
		Wages	+	+	+	Deployment increases wages.	✓	✓
2	Deployment	Employment	0	-	+	Deployment has no significant impact on employment.		
2		Production	+	+	+	Deployment increases production.		
	Wages	Employment	-	-	+	Wages reduce employment.		✓
	Employment	Production	-	-	+	Employment reduces production.		✓
		Wages	-	-	+	Remittances reduce wages.		✓
3	Remittances	Employment	-	-	+	Remittances reduce employment.		
		Production	-	-	+	Remittances reduce production.	√	✓

	Wages	Employment	+/-	+/-	+	Wages have an ambiguous impact on employment.		✓
	Employment	Production	-	-	+	Employment reduces production.		✓
		Wages	+	+	+	FDI flows increase wages.	√	√
	FDI flows	Employment	-	-	+	FDI flows reduce employment.	√	✓
		Production	-	-	+	FDI flows reduce production.		
4	Wages	Employment	+/-	+/-	+	Wages have an ambiguous impact on		✓
	Employment	Production	-	-	+	employment Employment reduces production.	✓	✓
	Wages	FDI flows	0	+/-	+	Wages has no significant impact on FDI flows.		
	Employment	FDI flows	+	+	+	Employment increases FDI flows.	✓	✓
5	Production	FDI flows	0	+/-	+	Production has no significant impact on FDI flows.	✓	

Note: (+) in VAR and in OIRF indicates a significantly positive relationship between the impulse variable and response variable; (-) in VAR and in OIRF indicates a significantly negative relationship between the impulse variable and response variable; (0) in VAR and in OIRF indicates insignificant relationship between the impulse variable and response variable; (+/-) in VAR and in OIRF indicates ambiguous relationship between the impulse variable and response variable; (+) in FEVD indicates that the direction of relationship between the impulse variable and response variables is reinforced.

Source: Compiled by the authors.

5. Conclusions and Recommendations

5.1. Conclusions

Assuming full employment, we investigated the ability of labor emigration (i.e., deployment and remittances) and FDI flows to be inclusive – increase the income generating capabilities of those left behind, increase employment opportunities, and reinforce production not only in the manufacturing sector (i.e., representative of the capital-intensive sector) but also in the agricultural sector (i.e., representative of the labor-intensive sector). Because of the limited discussion on the causal impact of emigration on those who are left behind, we traced its dynamics by estimating the impacts of labor emigration on the sending-economy particularly on employment and production in the capital- and labor-intensive sectors of the Philippines.

In validating our hypothesis, we posed the question: *Does labor emigration (i.e., deployment and remittances), and FDIs have an impact on wages, employment, and production in the capital- and labor-intensive sectors in the Philippines?* Addressing such provided answers to how development strategies that rely on labor emigration and FDI can be recalibrated and made sufficient to achieve inclusive growth. We were guided by our objective of determining if migration and FDIs have an impact on wages, employment, and production in the Philippine labor-intensive sector versus capital-intensive sector.

Against this backdrop, we were not able to confirm our hypothesis that: labor emigration becomes inclusive since it provides employment opportunities for unemployed laborers left behind in the sending-economy, and FDI flows may be inclusive in the long-run since it can give opportunities for unemployed laborers left behind in the sending-economy. Instead, we found that employment opportunities in manufacturing is due to the transfer of labor, not necessarily from the unemployed in the labor-intensive sector. Similarly, the employment effect of deployment in agriculture is negative and insignificant is due to the inability of the unemployed workers to exploit the opportunities due to limited training.

Our analysis began with addressing our first research objective: to gather relevant data — migration flows, FDI flows, wages, employment, and production in the labor- and capital-intensive sectors of the Philippines, and illustrate their respective trends. From the data, we were able to see that all variables have exhibited an increasing trend only to be disrupted by the COVID-19 pandemic of 2020. It is worth noting that despite the crisis, deployment and remittances has remained resilient as these variables did not exhibit serious declines. FDI flows on the other hand has been increasing but posting dips along the way due to various socioeconomic and political issues the Philippines has been involved in affecting appetite of foreign investors towards the economy.

Data at the national, capital-intensive sector-specific, and labor-intensive sector-specific levels allowed us to address our second research objective. It facilitated the use of the VAR approach, to estimate the response of wages, employment, and production to impulses emanating from deployment, remittances, and FDI flows. Estimating the VAR(p) model and its accompanying OIRF and FEVD, we have seen results consistent with theory and/or scholarly literature, as well as counterintuitive findings – all of which have been summarized in Tables 12a and 12b. To facilitate comparison of results, Table 13 presents a cross-comparative compilation. We can see that inclusivity is apparent in the capital-intensive sector but not in the labor-intensive sector. We have also seen potentials of inclusivity provided critical constraints in the labor-sending economy are addressed.

Table 14: Cross-Comparative Compilation of Empirical Findings

Impulse	Response	Capital- Intensive	Labor- Intensive	Conclusion	Remarks
	Wages	Deployment increases wages in the capital- intensive sector	Deployment increases wages in the labor- intensive sector	Inclusive	Labor emigration has economic and financial benefits to those left behind
Deployment	Employment	Deployment increases employment in the capital- intensive sector	Deployment decreases employment in the labor- intensive sector	Not inclusive	Labor emigration has economic and financial benefits to those left behind in the capital-intensive sector; laborers in the labor-intensive

					sector can move to capital-intensive sector or in the international labor market assuming barriers to mobility are hurdled.
	Production	Deployment has an ambiguous impact on production in the capital- intensive sector	Deployment weakly increases production in the labor- intensive sector	Not strongly inclusive	Labor emigration will result to an inward shift in the sending-economy's PPF due to reduction, loss, or exhaustion of its scarce human resources.
	Wages	Remittances decrease wages in the capital- intensive sector	Remittances decrease wages in the labor- intensive sector	Not inclusive	One of the controversies of remittances.
Remittances	Employment	Remittances increase employment in the capital- intensive sector	Remittances decrease employment in the labor- intensive sector	Not inclusive	Because of the success of other household members who emigrated, those left behind, particularly the young, also want to work overseas.
	Production	Remittances have an ambiguous impact on production in the capital- intensive sector	Remittances decrease production in the labor- intensive sector	Not inclusive	Labor emigration will result to an inward shift in the sending-economy's PPF due to reduction, loss, or exhaustion of its scarce human resources
	Wages	FDI flows increase wages in the capital- intensive sector	FDI flows increase wages in the labor- intensive sector	Inclusive	FDI flows will increase wages because of an increase in labor demand as production is enhanced with more productive inputs.
FDI flows	Employment	FDI flows increase employment in the capital- intensive sector	FDI flows decreases employment in the labor- intensive sector	Not inclusive	Labor inputs have become more expensive with higher wages. Most FDI flows go to the capital- intensive sector.
	Production	FDI flows increase production in the capital- intensive sector	FDI flows decrease production the labor-intensive sector	Not inclusive	FDI flows are not necessarily beneficial for the labor-intensive sector because of specific circumstances, issues of adverse selection, and excessive leverage.
Production	FDI flows	Production in the capital- intensive sector does not have significant impact on FDI flows	Production in the labor- intensive sector does not have significant impact on FDI flows	-	FDI flows are not automatic consequences of production alone but more of the state of investment landscape in an economy

Source: Compiled by the authors.

From these results, we have the following salient implications:

On deployment:

- 1. Labor emigration is not beneficial for the labor-intensive sector (i.e., agriculture). It reduces employment and production.
- 2. Although labor emigration increases employment in the capital-intensive sector (i.e., manufacturing), it does not increase production because of limited capital inputs.

On remittances:

1. Remittances are not also beneficial for agriculture. We have seen an apparent increase in the reservation wage with remittances. This decreases the supply of labor and production of agriculture. Hence, this decreases the demand for labor and the wage rate.

On FDI flows:

1. FDI flows are beneficial for manufacturing but not necessarily for agriculture.

Therefore, empirical results tell us that labor emigration, remittances, and FDI flows are not inclusive because it worsens the situation in agriculture.

5.2. Policy Recommendations

In addressing our third research objective, our empirical findings from VAR, OIRF, and FEVD provide policy implications on how labor emigration and FDI flows can be inclusive.

5.2.1. Complement Labor Emigration with more FDI Flows.

Labor emigration and FDI flows must be leveraged simultaneously. The weak and insignificant impact of deployment and employment on production indicates that the deployment of labor must be accompanied by FDI flows so the production effect of employment can become significant as more labor can now work with more capital in both sectors. While labor emigration has become an economic fixture of the Philippines, much work is required in attracting FDIs. Thus, there is a need to make the Philippines attractive to FDIs that will infuse the required capital for the labor force.

Attracting FDI flows is easier said than done because they are not automatic consequences of changes in production, wages, or employment levels but more of the state of economic landscape. That is, beyond production, the Philippines must enhance its overall investment climate through resilient macroeconomic fundamentals, robust and investment grade sovereign credit ratings, stable political situation, among others. In line with these, the Philippines has been making significant strides in easing restrictions on foreign enterprises in order to attract FDIs. In particular, the Ease of Doing Business Law, Retail Trade Liberalization Act of 2000, Public Services Act of 1936, and the Foreign Investment Act of 1991 have been recently amended in order to address red tape, corruption, and stringent restrictions of foreign investors on ownership and capitalization. These amendments must be complemented by programs to address persistent critical constraints particularly on infrastructure and high power costs.

In terms of infrastructure development, the Philippines continues its heavy infrastructure spending by diversifying funding strategy using public private partnerships (PPP) so the economy benefits sooner from it. Government must also diffuse investment in infrastructure

development beyond metropolitan areas so FDIs can also find its way to rural and agricultural areas. With respect to power cost, government and private sector must intensify its pivot towards renewable energy so the Philippines does not continue relying on coal and fossil fuels.

With the Philippines strengthening its position in ASEAN Economic Community (AEC) and ratifying its membership in the Regional Comprehensive Economic Partnership (RCEP), the country is on the right track introducing amendments in its investment policies. However, implementation must be intensified and unnecessary disruptions mitigated.

5.2.2. Invest in People by Prioritizing Education and Upscaling Skills.

In mobilizing unemployed labor in agriculture, human capital must be formed via education and capability enhancement. This will enhance labor productivity and production in their respective sectors, exploit opportunities in other sectors, and harness the effects of FDI flows.

However, because of the private nature of training, and the persistence of poverty in rural areas, those in the agricultural sector may not be able to shoulder the cost of training. Hence, at the onset, government can provide subsidized technical and vocational training programs to targeted groups, such as farmers and fisherfolks. Government can be more aggressive in responding to: (1) quality improvement needs of basic education and (2) persistence of poverty in agricultural sector. While these can be addressed by ensuring that marginalized sectors have access to capability-enhancement programs through government subsidies, if targeted groups from marginalized sectors have inadequate basic education, it will be ineffective because they will have difficulties participating in such programs requiring prior basic technical skills. In the long run, with an enhanced public basic education, individuals from the marginalized sectors can increase their chances of participating in publicly funded or subsidized capability-enhancement programs. This will create a greater impact on promoting inclusivity because upscaling skills can arrest the reduction of output in agriculture, or any other sector.

Education can also address other sources of non-inclusivity such as standard of living differentials, gender gap, and digital divide. Human capital formation stimulates new ways of doing things, innovates existing practices, and levels the playing field for economic agents.

5.2.3. Enhance Assistance Provided to the Agricultural Sector.

Empirical results indicated that agricultural sector has been adversely impacted by labor emigration and FDI flows warranting assistance for the sector. Since agriculture is a labor-intensive sector, aside from capability-enhancement, government can create more non-farm employment opportunities in this sector. Processing agricultural primary products is a specific non-farm employment opportunity that increases the employment and value added of agriculture. This can be anchored on a value-chain approach to agricultural development wherein production growth should not be limited to individual components of the sector. It must encompass agriculture's entire value chain from procurement to production to processing to distribution. Government can also invest on effective irrigation systems; transport infrastructure; programs that promote resilience and disaster risk reduction; innovations to manage diseases and pests; design programs to enhance planning and management of land use and water resources; ensure adequate financing to enhance the competitiveness of agriculture under trade liberalization; and strengthen government financial and technical assistance. However, with limited government funding, private sector participation can be tapped through investment in agribusiness and agritourism where both farmers and private sector mutually

benefits. These promote efficiency in performing agricultural work developing the sector's productive capacity resulting to production growth.

5.2.4. Redirect Utilization of Remittances from Consumption to Savings-Investment.

To mitigate the consequential increase in reservation wage due to remittances, redirecting the use of remittances from consumption to savings-investment alternatives may be worthwhile. That is, a lower proportion of remittances allocated for consumption may encourage its recipients to increase labor supply. This will mitigate employment and production decline.

By strengthening and innovating social security, government-backed investment schemes (e.g., provident funds – Flexi-Fund program) and housing programs (e.g., home development mutual funds), remittances can be mobilized towards productive use through savings-investment. These vehicles serve as channels for migrant workers to place their money in interest-earning instruments. Savings mobilization would motivate them to save while they work abroad and would maximize gains from remittances. Such will sustainably create value and augment household income resulting to faster capital accumulation.

With the right value proposition, venturing into remittance-fueled entrepreneurship can increase income, provide employment, and alleviate poverty. Through Go Negosyo's caravans, business seminars, multimedia campaigns, and publications, it can encourage Filipinos to engage in business. Such programs can also introduce remittance-recipient households to viable business opportunities, entrepreneurship-related training programs, and funding sources that can stimulate the enterprising attitude and competitive nature of Filipinos.

5.2.5. Recommendations for Future Studies.

We have been limited by the availability of consistent and longer time series data for our variables. Specifically, we have encountered short time series data as data providers are not able to consistently compile information (e.g., FDI, wage, and production data) and make them readily accessible. A limited number of years is publicly posted only to be worsened by varying data recording methodologies and missing years not posted. This has been bridged by alternative sources from international organizations and subscription data. We recommend the following to improve data analytics on inclusivity:

- 1. There should be a fundamental data governance. Government must invest in digital infrastructure and processes needed for the consistent collection, management, and processing of longer time series data.
- 2. There is a need to eliminate data silos across government agencies (PSA, BSP, POEA, DOLE, NEDA, among others) and support the development of standards and protocols for data collection, management, and processing.
- 3. There is a need to create initiatives to increase data sharing and access such as the creation of reliable data portals for easy access to labor-relevant dataset.

Because this study is the first to bridge the gap identified in Figure 1 that provides basis to expanding discourse on the inclusivity of factor flows, future studies may shift the research design from a purely quantitative approach to a mixed methods approach by incorporating a qualitative design. This will allow for the inclusion of variables beyond trade liberalization, such as well-being level, gender inequality, access to digitalization, among others, in explaining inclusivity.

6. Acknowledgements

This study was funded by the Philippine Institute of Development Studies (PIDS) – Philippine APEC Study Center Network (PASCN) under PIDS Project No. PASCN-RGA/00-2021/42.

7. Declaration of Ownership

This report is our original work.

8. Ethical Clearance

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee.

9. Bibliography

- Abouelfarag, H. A., & Abed, M. S. (2018). The impact of foreign direct investment on real wages in Egypt: A sectoral empirical analysis. *Topics in Middle Eastern and African Economies*, 20(2). 70-89. http://meea.sites.luc.edu/volume20/PDFs/2.4.%20AbouelFarag Abed EgyptFDI.pdf
- Ahsan, A., Abella, M., Beath, A., Huang, Y., Luthria, M., & Nguyen T. V. (2014, October). The economic impact of international migration on labor-receiving countries. In The World Bank (Ed.), *International Migration and Development in East Asia and the Pacific.* The World Bank Group. https://doi.org/10.1596/978-0-8213-9649-0 ch3
- Al Mamun, M., Sohag, K., Uddin, G., & Shahbaz, M. (2015). Remittance and domestic labor productivity: Evidence from remittance recipient countries. *Economic Modelling*, 47, 207–218. https://doi.org/10.1016/j.econmod.2015.02.024
- Al Mamun, M., Sohag, K., Samargandi, N., & Yasmeen, F. (2016). Does remittance fuel labor productivity in Bangladesh? The application of an asymmetric non-linear ARDL approach. *Applied Economics*, 48(50), 4861–4877. https://doi.org/10.1080/00036846.2016.1167825
- Aldaba, R. M. (2022). FDI spillover effects: Evidence from the Philippines (ERIA Discussion Paper Series No. 2022-08). Economic Research Institute for ASEAN and East Asia. https://www.eria.org/uploads/media/discussion-papers/FY22/FDI-Spillover-Effects-Evidence-from-the-Philippines..pdf
- Amann, E., & Virmani, S. (2014). Foreign direct investment and reverse technology spillovers: The effect on total factor productivity. *OECD Journal: Economic Studies*. https://www.oecd.org/economy/growth/Foreign-direct-investment-and-reverse-technology-spillovers-The-effect-on-total-factor-productivity-OECD-Journal-Economic-Studies-2014.pdf
- Amuedo-Dorantes, C., & Pozo, S. (2023, May). The widespread impacts of remittance flows. *IZA World of Labor*, 97(2). https://wol.iza.org/uploads/articles/655/pdfs/good-and-bad-in-remittance-flows.pdf
- Appleyard, D. R., Field Jr., A. J., & Cobb, S. L. (2010). *International economics* (7th edition). McGraw-Hill.

- Arnal, E., & Hijzen, A. (2008, October 23). *The impact of foreign direct investment on wages and working conditions* (OECD Social, Employment and Migration Working Papers No. 68). OECD Publishing. https://doi.org/10.1787/230184240223
- Asch, B. J. (Ed.). (1994). *Emigration and its effects on the sending country*. RAND Corporation. https://www.rand.org/pubs/monograph_reports/MR244.html
- Avrett, J. (2023). 2023 investment climate statements: Philippines. US Department of State. https://www.state.gov/reports/2023-investment-climate-statements/the-philippines/
- Bailey, T. (2015, April 22). The impact of migration on sender countries. *World Finance*. https://www.worldfinance.com/strategy/government-policy/the-impact-of-migration-on-sender-countries
- Baškot, B. (2019). Capital flows impact on labor market: How do FDIs and remittances effect youth employment in Bosnia and Herzegovina? *Economic Research Ekonomska Istraživanja*, 33(1), 2633-2647. https://doi.org/10.1080/1331677X.2020.1761418
- Bauer, T. K., Haisken-DeNew, J. P., & Schmidt, C. M. (2005). *International labour migration, economic growth and labour markets The current state of affairs* (RWI Discussion Paper No. 20). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=784548
- Behman, S. (1969). Wage changes, institutions, and relative factor prices in manufacturing. *The Review of Economics and Statistics*, 51(3), 227-238. https://doi.org/10.2307/1926558
- Besanko, D. A., & Braeutigam, R. R.. (2002). *Microeconomics: An integrated approach*. John Wiley & Sons, Inc.
- Bräuninger, M., & Pannenberg, M. (2002). Unemployment and productivity growth: An empirical analysis within the Augmented Solow Model. *Economic Modelling*, 19(1), 105-120. https://doi.org/10.1016/S0264-9993(00)00065-1
- Brincikova, Z., & Darmo, L. (2014). The impact of FDI inflow on employment in V4 countries. *European Scientific Journal*, 1, 245-252. https://core.ac.uk/download/pdf/236406853.pdf
- Brown, A. (2015, November 24). Do emigration really increase the wages of non-emigrants? *World Bank Blogs.* https://blogs.worldbank.org/jobs/does-emigration-really-increase-wages-non-emigrants
- Cacnio, F. C. Q. (2017). The price effect of minimum wage: Evidence from the Philippines. *Bangko Sentral Review*. Bangko Sentral ng Pilipinas. https://www.bsp.gov.ph/Media And Research/Publications/BS2017 03.pdf
- Center for Migrant Advocacy (CMA). (2009, June). The Philippines: A global model on labor migration? (2nd edition). Friendrich Ebert Stiftung. https://centerformigrantadvocacy.files.wordpress.com/2012/06/the-philippines-a-global-model-on-labor-migration.doc
- Chami, R., Ernst, E., Fullenkamp, C., & Oeking, A. (2018, May). Are remittances good for labor markets in LICs, MICs and fragile states? Evidence from cross-country data (IMF Working Paper No. 18/102). International Monetary Fund. https://www.imf.org/media/Files/Publications/WP/2018/wp18102.ashx
- Cuaresma, B. (2019). *BSP: manufacturing gets 1/3 of FDI*. Good Governance Philippines. https://governance.neda.gov.ph/bsp-manufacturing-gets-1-3-of-fdi/
- de Vera, B. O. (2022, September 1). PH manufacturing growth picked up in August. *The Philippine Daily Inquirer*. https://business.inquirer.net/360234/ph-manufacturing-growth-picked-up-in-august
- Démurger, S. (2015, April). Migration and families left behind. *IZA World of Labor*, 144. https://wol.iza.org/articles/migration-and-families-left-behind/long

- Desbordes, R., & Franssen, L. (2019). Foreign direct investment and productivity: A cross country, multisector analysis. *Asian Development Review*, *36*(1), 54-79. https://www.adb.org/sites/default/files/publication/488961/adr-vol36no1-3-fdi-productivity.pdf
- Dinh, T. T. H., Vo, D. H., Vo, A. T., & Nguyen, T. C. (2019). Foreign direct investment and economic growth in the short run and long run: Empirical evidence from developing countries. *Journal of Risk and Financial Management*, 12(4), 176. https://doi.org/10.3390/jrfm12040176
- Diola, K. K. (2022, February 3). *Easing barriers to foreign direct investment*. PwC Philippines. https://www.pwc.com/ph/en/tax/tax-publications/taxwise-or-otherwise/2022/easing-barriers-to-foreign-direct-investment.html
- Docquier, F., Özden, Ç., & Peri, G. (2010, December 20). *The wage effects of immigration and emigration*. World Bank. https://www.oecd.org/els/47326474.pdf
- Duan, J., & Lu, D. (2018). The revelation of Philippine labor exporting experiences in the context of the Belt and Road. *Advances in Economics, Business and Management Research*, 58. https://www.atlantis-press.com/article/25900752.pdf
- Dumont, J. C., & Liebig, T. (2014, May). Is migration good for the economy? *Migration Policy Debates*. Organisation for Economic Co-operation and Development. https://www.oecd.org/migration/OECD%20Migration%20Policy%20Debates%20Numero%202.pdf
- Dustmann, C., Frattini, T., & Glitz, A. (2006). *The impact of migration: A review of economic evidence* (File No. 102 Contract No. 36/2006). Center for Research and Analysis of Migration. https://gov.wales/sites/default/files/statistics-and-research/2018-12/080506migrationeconomicevidenceen.pdf
- Dustmann, C., Glitz, A., & Frattini, T. (2008). The labour market impact of immigration. *Labour Migration in Europe*, 24(3), 477-494. https://www.jstor.org/stable/23606899
- Elliott, G., Granger, C. W., & Timmermann, A. (2006). *Handbook of economic forecasting series*. Elsevier B. V. https://www.sciencedirect.com/handbook/handbook-of-economic-forecasting
- Elsner, B. (2015, November). Does emigration increase the wages of non-emigrants in sending countries? *IZA World of Labor*. https://wol.iza.org/uploads/articles/208/pdfs/does-emigration-increase-wages-of-non-emigrants-in-sending-countries.pdf
- Elsner, B. (2022, March). Does emigration increase the wages of non-emigrants in sending countries? *IZA World of Labor*. https://wol.iza.org/articles/does-emigration-increase-wages-of-non-emigrants-in-sending-countries/long
- Enders, W. (2004). *Applied econometric time series* (2nd edition). John Wiley and Sons, Inc.
- Engler, P., MacDonald, M., Piazza, R., & Sher, G. (2020, June 19). Migration to advanced economies can raise growth. *IMF Blog*. https://www.imf.org/en/Blogs/Articles/2020/06/19/blog-weo-chapter4-migration-to-advanced-economies-can-raise-growth
- Estrin, S. (2017, January). Foreign direct investment and employment in transition economies. *IZA World of Labor*, 330. https://wol.iza.org/articles/foreign-direct-investment-and-employment-in-transition-economies/long
- European Commission. (n.d.). Inclusive labour markets. *Employment, Social Affairs & Inclusion*. https://ec.europa.eu/social/main.jsp?catId=1134&langId=en
- Fløystad, G. (1972). Real wages, factor prices and gain from international trade. *International Economic Review*, 13(1), 65-84. https://doi.org/10.2307/2525906
- Friedberg, R. M., & Hunt, J. (1995). The impact of immigrants on host country wages, employment and growth. *Journal of Economic Perspectives*, 9(2), 23-44. https://www.aeaweb.org/articles?id=10.1257/jep.9.2.23

- Galang, V. M. P. (2019, July 22). Agriculture: Low productivity and high production costs. *BusinessWorld.** https://www.bworldonline.com/special-reports/2019/07/22/242980/agriculture-low-productivity-and-high-production-costs/
- Glotis, G., & Mylonas, N. (2022). Employment effect of minimum wages. *Encyclopedia*, 2(4), 1880-1892. https://doi.org/10.3390/encyclopedia2040130
- Grebeniyk, A., Aleshkovski, I., & Maksimova, A. (2021). The impact of labor migration on human capital development. *Migraciones Internacionales*, 12. https://doi.org/10.33679/rmi.v1i1.2190
- Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th edition). McGraw-Hill.
- Hale, G., & Xu, M. (2016, September 21). FDI effects on the labor market of host countries (Working Paper 2016-25). Federal Reserve Bank of San Francisco. http://www.frbsf.org/economic-research/publications/working-papers/wp2016-25.pdf
- Hanson, G. H. (2009). The economic consequences of the international migration of labor. *Annual Review of Economics, 1*, 179-207. https://gps.ucsd.edu/_files/faculty/hanson/hanson_publication_migration_consequences.pdf
- Henderson, D. (2020, October 4). More capital per worker makes workers more productive. *Econlib.* https://www.econlib.org/more-capital-per-worker-makes-workers-more-productive/
- Hirose, N. (1994). International labor migration and its economic effects. *Asia-Pacific Review*, *1*(1), 39-57. https://doi.org/10.1080/13439009408719881
- Intal Jr., P. S., Borromeo, M. R. V., & Castillo, J. C. E. D. (2008). Sustaining the Philippine manufacturing sector. *The Philippine Review of Economics*, 45(1), 15-48. https://pre.econ.upd.edu.ph/index.php/pre/article/download/210/663
- International Labour Organization (ILO). (2019). *The impact of trade on employment in the Philippines: Country report.* International Labour Organization Country Office for the Philippines. https://www.ilo.org/wcmsp5/groups/public/---ed emp/documents/publication/wcms 742567.pdf
- Jaumotte, F., Koloskova, K., & Saxena, S. (2016, October 24). Migrants bring economic benefits for advanced economies. *IMF Blog*. https://www.imf.org/en/Blogs/Articles/2016/10/24/migrants-bring-economic-benefits-for-advanced-economies
- Jimenez, A., Lee, J. Y., & Ordeñana, X. (2021). Introduction: FDI and institutional quality: New insights and future perspectives from emerging and advanced economies. *Sustainability*, 13(8). https://doi.org/10.3390/su13084413
- Jinjarak, Y., & Naknoi, K. (2011, November). *Competition, labor intensity, and specialization:*Structural changes in postcrisis Asia (ADB Economics Working Paper Series No. 289).

 Asian Development Bank. https://www.adb.org/sites/default/files/publication/29663/economics-wp-289.pdf
- Joly, D. (2000). Some structural effects of migration on receiving and sending economies. *International Migration*, 38(5), 25-40. https://library.fes.de/libalt/journals/swetsfulltext/9404782.pdf
- Jones, R. W. (2003). Trade theory and factor intensities: An interpretative essay. In E. K. Choi, & J. Harrigan, *Handbook of International Trade*. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470756461.ch1
- Jung, J. (2020). Institutional quality, FDI, and productivity: A theoretical analysis. Sustainability, 12(17). https://doi.org/10.3390/su12177057
- Kang, H., & Martinez-Vasquez, J. (2022). When does foreign direct investment lead to inclusive growth? *The World Economy*, 45(8), 2394-2427. https://doi.org/10.1111/twec.13236

- Katseli, L. T., Lucas, R. E. B., & Xenogiani, T. (2006). *Effects of migration on sending countries: What do we know?* (Working Paper No. 250). OECD Development Center. https://www.un.org/en/development/desa/population/events/pdf/other/turin/P11_Kats eli.pdf
- Koczan, Z., Peri, G., Pinat, M., & Rozhkov, D. (2021, March). *The impact of international migration on inclusive growth: A review* (IMF Working Paper No. 21/88). International Monetary Fund. https://www.imf.org/media/Files/Publications/WP/2021/English/wpiea2021088-print-pdf.ashx
- Kupets, O. (2012). The economic and demographic effects of labour migration in the EU Eastern Partners and Russia: A synthesis report (CARIM-East Research Report No. 2012/26). European University Institute. https://cadmus.eui.eu/handle/1814/24869
- Laforga, B. M. (2021, May 24). Allow foreigners in agriculture sector, government asked. *BusinessWorld.* https://www.bworldonline.com/top-stories/2021/05/24/370343/allow-foreigners-in-agriculture-sector-government-asked/
- Lemos, S. (2004, March). *The effect of the minimum wage on prices* (IZA Discussion Paper No. 1072). Institute for the Study of Labor. https://docs.iza.org/dp1072.pdf
- Loungani, P., & Razin, A. (2001, June). How beneficial is Foreign Direct Investment for developing countries? *Finance & Development*, 38(2). https://www.imf.org/external/pubs/ft/fandd/2001/06/loungani.htm
- Manila Times, The. (2022, October 19). FDI is working for PH Let's keep it that way. *The Manila Times*. https://www.manilatimes.net/2022/10/19/opinion/editorial/fdi-is-working-for-ph-lets-keep-it-that-way/1862788
- Mantovani, I., & de Crombrugghe, A. (2022, October 5). Foreign investment has helped to deliver growth in Southeast Asia can it also deliver sustainable development? Hinrich Foundation. https://www.hinrichfoundation.com/research/article/fdi/foreign-investment-deliver-growth-in-southeast-asia/
- Massey, D. S., Arango, J., Hugo, G., Kouaouci, A., Pellegrino, A., & Taylor, J. E. (1993). Theories of international migration: A review and appraisal. *Population and Development Review*, 19(3), 431-466. https://doi.org/10.2307/2938462
- Medina, A. F. (2023, May 26). Investment hotspots in the Philippines: Promising sectors to watch. *ASEAN Briefing*. https://www.aseanbriefing.com/news/investment-hotspots-in-the-philippines-promising-sectors-to-watch/
- Merler, S. (2017, January 16). The economic effects of migration. *Bruegel*. https://www.bruegel.org/blog-post/economic-effects-migration
- Miracle, M. P., & Berry, S. S. (1970). Migrant labour and economic development. *Oxford Economic Papers*, 22(1), 86-108). https://www.jstor.org/stable/2662567
- Murakami, E., Yamada, E., & Sioson, E. P. (2021). The impact of migration and remittances on labor supply in Tajikistan. *Journal of Asian Economics*, 73. https://doi.org/10.1016/j.asieco.2020.101268
- Neumark, D. (2018). Employment effects of minimum wages. *IZA World of Labor*, 6(2). https://wol.iza.org/uploads/articles/464/pdfs/employment-effects-of-minimum-wages.pdf
- Ochave, R. M. D. (2020, February). PHL fourth-largest remittance destination in 2019. **BusinessWorld.** https://www.bworldonline.com/phl-fourth-largest-remittance-destination-in-2019/**
- O'Neil, K. (2004, January 1). Labor export as government policy: The case of the Philippines. *Migration Information Source*. https://www.migrationpolicy.org/article/labor-export-government-policy-case-philippines

- Organisation for Economic Co-operation and Development (OECD). (2002). Foreign Direct Investment for development. OECD Publications Service. https://www.oecd.org/investment/investmentfordevelopment/1959815.pdf
- Organisation for Economic Co-operation and Development (OECD). (2017). *Interrelations between public policies, migration and development in the Philippines*. Scalibrini Migration Center. https://www.oecd-ilibrary.org/migration-and-the-labour-market-in-the-philippines_5jfvqfvmkh0r.pdf?itemId=%2Fcontent%2Fcomponent%2F97892642722 86-8-en&mimeType=pdf
- Pacqueo, V. B., Orbeta Jr., A. C., Lanzona Jr., L. A., & Dulay, D. G. C. (2014). *Labor policy analysis for jobs expansion and development* (Discussion Paper Series No. 2014-34). Philippine Institute for Development Studies. https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidsdps1434_rev2.pdf
- Paul, R. K. (2014, December). *Cointegration*. Indian Agricultural Statistics Research Institute. https://www.yumpu.com/en/document/view/32512077/cointegration-iasri
- Paul, S. (2018, March). The effect of emigration on household labor supply: Evidence from Central Asia and South Caucasus (ADBI Working Paper Series No. 822). ADB Institute. https://www.adb.org/sites/default/files/publication/410611/adbi-wp822.pdf
- Pieńkowski, J. (2020, April). *The impact of labour migration on the Ukrainian economy* (Discussion Paper 123). European Commission. https://ec.europa.eu/info/sites/default/files/economy-finance/dp123 en.pdf
- Poelhekke, S., & van der Ploeg, F. (2013). Do natural resources attract nonrecourse FDI? *Review of Economics and Statistics*, 95(3), 1047–1065. https://doi.org/10.1162/REST a 00292
- Ratha, D., Mohapatra, S., & Scheja, E. (2013). *Impact of migration on economic and social development: A review of evidence and emerging issues* (Policy Research Working Papers). World Bank Group. https://doi.org/10.1596/1813-9450-5558
- Rivera, J. P. R. (2013). Evaluating the effects of taxing the remittances of skilled workers on capital accumulation and aggregate income using an overlapping generations model. *Journal of Economics and Economic Education Research*, 14(3), 1-20. https://www.abacademies.org/articles/jeeervol14no32013.pdf
- Rivera, J. P. R., & Tullao Jr., T. S. (2020). Investigating the link between remittances and inflation: Evidence from the Philippines. *South East Asia Research*, 28(3), 301-326. https://doi.org/10.1080/0967828X.2020.1793685.
- Rivera, J. P. R., & Tullao Jr., T. S. (2022). Estimating the impact of selected macroeconomic indicators on remittance inflows in the Philippines. *Journal of Southeast Asian Economies*, 39(3), 273-290. https://www.jstor.org/stable/27193070
- Rizvi, S. Z. A., & Nishat, M. (2009). The impact of foreign direct investment on employment opportunities: Panel data analysis: Empirical evidence from Pakistan, India and China. *The Pakistan Development Review, 48*(4), 841-851. https://www.jstor.org/stable/41261350
- Romer, P. M. (1990). Capital, labor, and productivity. *Brookings Papers on Economic Activity*, 337-367. https://doi.org/10.2307/2534785
- Salvatore, D. (2019). *International economics* (13th edition). Wiley.
- Santos, E. (2023). FDI and firm productivity: A comprehensive review of macroeconomic and microeconomic models. *Economies*. *11*(6). https://doi.org/10.3390/economies11060164

- Saucedo, E., Ozuna Jr., T., & Zamora, H. (2020). The effect of FDO on low and high-skilled employment and wages in Mexico: A study for the manufacture and service sectors. *Journal of Labour Market Research*, 54(9). https://doi.org/10.1186/s12651-020-00273-x
- Scheja, E., Mohapatra, S., & Ratha, D. (2011, February 28). How does migration shape economic and social development? *World Bank Blogs*. https://blogs.worldbank.org/peoplemove/how-does-migration-shape-economic-and-social-development
- Sherman, A., Trisi, D., Stone, C., Gonzales, S., & Parrott, S. (2019, August 15). *Immigrants contribute greatly to U.S. economy, despite administration's "public charge" rule rationale*. Center on Budget and Policy Priorities. https://www.cbpp.org/research/poverty-and-inequality/immigrants-contribute-greatly-to-us-economy-despite-administrations
- Sims, C. A. (1980). Macroeconomics and reality. *Econometrica*, 48(1), 1–48. https://doi.org/10.2307/1912017
- Sugiharti, L., Yasin, M. Z., Purwono, R., Esquivas, M. A., & Pane, D. (2022). The FDI spillover effect on the efficiency and productivity of manufacturing firms: Its implication on open innovation. *Journal of Open Innovation: Technology, Market, and Complexity*, 8(2). https://doi.org/10.3390/joitmc8020099
- Suthaharan, N., & Bleakly, J. (2022, September 15). *Wage-price dynamics in a high-inflation environment: The international evidence*. Reserve Bank of Australia. https://www.rba.gov.au/publications/bulletin/2022/sep/wage-price-dynamics-in-a-high-inflation-environment-the-international-evidence.html
- Talavera, C. (2021, September 20). Foreign investments needed to boost agriculture. *The Philippine Star.* https://www.philstar.com/business/2021/09/20/2128238/foreign-investments-needed-boost-agriculture
- Tipayalai, K. (2020). Impact of international labor migration on regional economic growth in Thailand. *Journal of Economic Structures*, 9(15). https://doi.org/10.1186/s40008-020-00192-7
- Todaro, M. P., & Smith, S. C. (2014). Economic development (12th edition). Pearson.
- Tomlinson, S. (n.d.). *Understanding how a change in technology or resources affects the PPF*. https://college.cengage.com/economics/0538797274_mceachern/student/lecture/8346. pdf
- Trehan, B. (2001, October 12). Unemployment and productivity. *FRBSF Economic Letter*. https://www.frbsf.org/economic-research/publications/economic-letter/2001/october/unemployment-and-productivity/
- Tuladhar, R., Sapkota, C., & Adhikari, N. (2014, July). *Effects of migration and remittance income on Nepal's agricultural yield* (ADB South Asia Working Paper Series No. 27). https://www.adb.org/sites/default/files/publication/42886/south-asia-wp-027.pdf
- Vargas-Silva, C. (2020, February 18). The labor market effects of immigration. *The Migration Observatory*. https://migrationobservatory.ox.ac.uk/resources/briefings/the-labourmarket-effects-of-immigration/
- Vargas-Silva, C., & Sumption, M. (2023, March). The labor market effects of immigration. *The Migration Observatory*. https://migrationobservatory.ox.ac.uk/resources/briefings/the-labour-market-effects-of-immigration/
- Venturini, A., & Villoso, C. (2004). *Labour market effects of immigration: An empirical analysis based on Italian data* (International Migration Papers No. 69). International Labour Office Geneva. https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---migrant/documents/publication/wcms 201589.pdf

- Vijaya, R. M., & Kaltani, L. (2007). Foreign direct investment and wages: A bargaining power approach. *Journal of World-Systems Research*, 13(1), 83-95. https://jwsr.pitt.edu/ojs/jwsr/article/download/361/373/
- Wickramasekara, P. (2008). Globalisation, international labour migration and the rights of migrant workers. *Third World Quarterly*, 29(7), 1247-1264. https://www.jstor.org/stable/20455108
- Williamson, J. G., & de Dios, E. S. (2014). Has the Philippines forever lost its chance at industrialization. *The Philippine Review of Economics*, 51(2), 47-66. https://econ.upd.edu.ph/pre/index.php/pre/article/download/909/809
- Wonyra, K. O., & Ametoglo, M. E. S. (2020). Impact of remittances on agricultural labor productivity in Sub-Saharan Africa. In E.S. Osabuohien (Ed.), The Palgrave Handbook of Agricultural and Rural Development in Africa (67-88). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-41513-6 4
- World Bank, The. (2018). *Moving for prosperity Global migration and labor markets* (Policy Research Report). International Bank for Reconstruction and Development / The World Bank. https://www.worldbank.org/en/research/publication/moving-for-prosperity
- Wysokińska, Z., & Kotwica, P. (1998). Export competitiveness: Elements of comparisons between Poland and Southeast Asian countries. *Russian & East European Finance and Trade*, 34(4), 64-87. https://www.jstor.org/stable/27749448
- Yu, Q., Mankad, S., & Shunko, M. (2021, June 10). Research: When a higher minimum wage leads to lower compensation. *Harvard Business Review*. https://hbr.org/2021/06/research-when-a-higher-minimum-wage-leads-to-lower-compensation

10. Appendix

Appendix 1: Dataset

Year	DEPLY	REMIT	InREMIT	FDINV	InFDINV	PMNFG	WMNFG	EMNFG	PAGRI	WAGRI	EAGRI
1991	721.00	1,649,374.00	14.32	1.05	0.05	63,538,593.58	196.43	2,405,138.77	30,939,001.72	88.06	6,788,024.81
1992	756.00	2,221,788.00	14.61	0.38	(0.97)	63,172,962.09	204.62	2,482,788.83	33,108,593.87	91.73	7,071,655.80
1993	941.00	2,276,395.00	14.64	2.00	0.69	65,793,045.46	210.95	2,470,973.32	34,271,422.03	95.55	7,292,404.50
1994	939.00	3,008,747.00	14.92	2.17	0.78	69,876,248.54	217.47	2,569,181.91	37,214,626.48	99.53	7,279,777.74
1995	795.00	3,868,578.00	15.17	1.75	0.56	73,611,020.99	224.20	2,657,720.77	39,061,122.59	103.68	7,508,323.54
1996	900.00	4,306,491.00	15.28	1.60	0.47	79,350,325.32	231.13	2,921,752.47	40,079,280.20	108.00	7,325,815.89
1997	1,013.00	5,741,835.00	15.56	1.30	0.26	84,896,996.33	238.28	3,000,014.90	39,160,212.80	111.34	7,250,518.08
1998	904.00	7,367,989.00	15.81	3.07	1.12	83,549,017.51	243.14	3,055,918.42	35,319,904.72	114.79	7,204,967.08
1999	1,016.00	6,021,219.00	15.61	2.14	0.76	84,216,974.80	248.10	3,113,859.41	38,139,959.31	118.34	7,430,500.82
2000	978.00	6,050,450.00	15.62	1.78	0.58	93,716,624.53	253.17	3,110,210.18	37,355,301.83	122.00	7,109,351.91
2001	1,029.00	6,031,271.00	15.61	0.96	(0.04)	98,530,624.87	258.33	3,023,834.78	37,559,417.84	125.77	6,941,525.03
2002	1,056.00	6,886,156.00	15.75	2.10	0.74	103,445,588.64	263.60	3,289,086.99	39,995,447.01	127.04	7,572,308.05
2003	982.00	7,578,458.00	15.84	0.57	(0.57)	110,079,050.53	266.27	3,096,633.15	41,911,412.65	128.32	7,051,311.69
2004	1,180.00	8,550,371.00	15.96	0.62	(0.47)	117,244,530.65	268.96	3,221,364.46	48,770,328.19	129.62	7,213,095.92
2005	1,327.00	10,689,005.00	16.18	1.55	0.44	127,633,778.86	271.67	3,300,862.52	51,023,603.27	130.93	7,302,128.36
2006	1,515.00	12,761,308.00	16.36	2.12	0.75	137,128,001.55	274.42	3,353,688.45	54,753,730.78	132.25	7,330,262.61
2007	1,747.00	14,449,928.00	16.49	1.87	0.63	147,945,499.63	277.19	3,428,877.58	60,999,062.17	132.65	7,352,601.31
2008	2,002.00	16,426,857.00	16.61	0.74	(0.30)	156,210,478.42	289.56	3,474,431.78	69,206,257.37	138.85	7,446,605.24
2009	1,912.00	17,348,052.00	16.67	1.17	0.16	153,439,443.98	299.93	3,516,041.40	70,776,087.74	145.14	7,709,812.53
2010	2,043.00	18,762,989.00	16.75	0.51	(0.67)	170,992,815.43	310.57	3,635,218.20	72,696,024.06	152.01	7,708,875.53
2011	2,158.00	20,116,992.00	16.82	0.86	(0.15)	175,669,299.73	316.49	3,774,759.49	79,013,784.35	158.20	8,014,501.33
2012	2,220.00	21,391,333.00	16.88	1.23	0.21	192,206,032.72	330.03	3,778,565.97	80,163,494.41	166.74	7,956,204.18
2013	2,285.00	22,984,034.81	16.95	1.32	0.27	201,272,651.99	343.97	3,903,922.55	81,576,699.12	170.34	7,782,579.55
2014	2,320.00	24,628,058.47	17.02	1.93	0.66	217,227,170.97	346.74	4,178,636.99	85,860,293.06	185.31	7,977,134.46
2015	2,447.00	25,606,830.18	17.06	1.84	0.61	223,696,064.77	358.71	4,237,604.62	80,699,348.56	194.50	7,640,056.70
2016	2,240.45	26,899,840.26	17.11	2.60	0.95	241,863,637.36	383.65	4,706,243.09	81,498,234.55	209.32	7,272,651.70
2017	2,338.57	28,059,789.50	17.15	3.12	1.14	257,309,362.15	390.53	4,644,014.58	86,972,102.09	220.26	6,465,583.58
2018	2,299.12	28,943,111.94	17.18	2.87	1.05	284,271,207.72	417.16	4,924,978.20	89,755,279.96	237.44	6,275,778.70
2019	2,177.08	30,133,299.90	17.22	2.30	0.83	304,703,504.42	421.33	5,123,657.14	88,618,674.72	260.37	6,126,553.05
2020	1,771.46	29,903,255.70	17.21	1.89	0.63	261,545,917.01	429.76	4,250,168.79	93,800,501.56	270.60	5,752,574.45
2021	1,825.03	31,417,614.42	17.26	2.67	0.98	293,898,892.31	442.65	4,732,808.21	102,434,632.94	285.19	6,147,417.80
Source	PSA (SOF)	BSP	Computed	Macrotrends	Computed	Computed	PSA (LFS)	Computed	Computed	PSA (LFS)	Computed
Unit	in 000 pax	in current 000 USD	ln	in current billion USD	ln	in PPP, 000 current USD	ADBP	in pax	in PPP, 000 current USD	ADBP	in pax

Appendix 2: Standard Time Series Analysis Procedures

Appendix 2.1: Phillips-Perron Stationarity Test

. pperron deply

Phillips-Perron test for unit root Number of obs = 30 Newey-West lags =

Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value

Z(rho) -1.937 -17.540 -12.660 -10.300

Z(t) -1.304 -3.716 -2.986 -2.624

MacKinnon approximate p-value for Z(t) = 0.6274

. pperron D1.deply

Phillips-Perron test for unit root

Number of obs = 29

Newey-West lags = 3

Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value

Z(rho) -28.139 -17.472 -12.628 -10.280
Z(t) -4.756 -3.723 -2.989 -2.625

MacKinnon approximate p-value for Z(t) = 0.0001

. pperron lnremit

Phillips-Perron test for unit root

Number of obs = 30

Newey-West lags = 3

------ Interpolated Dickey-Fuller -----Test 1% Critical 5% Critical 10% Critical

	Statistic	Value	Value	Value
Z(rho) Z(t)	-1.835 -2.942	-17.540 -3.716	-12.660 -2.986	-10.300 -2.624
MacKinnon	approximate p-value	for $Z(t) = 0.040$	 7	
. pperron	D.lnremit			
Phillips-1	Perron test for unit	root	Number of obs = Newey-West lags =	
			rpolated Dickey-Fuller	
	Test Statistic		5% Critical 10% Value	Value
Z(rho) Z(t)	-24.284 -4.523		-12.628 -2.989	-10.280 -2.625
MacKinnon	approximate p-value	for $Z(t) = 0.000$	 2	
. pperron	lnfdifl			
Phillips-1	Perron test for unit	root	Number of obs = Newey-West lags =	
			rpolated Dickey-Fuller	
	Test Statistic	1% Critical Value	5% Critical 10% Value	Critical Value
Z(rho) Z(t)	-17.964 -3.452	-17.540 -3.716	-12.660 -2.986	-10.300 -2.624
MacKinnon	approximate p-value	for $Z(t) = 0.009$	3	
. pperron	pmnfg			
Phillips-	Perron test for unit	root	Number of obs = Newey-West lags =	
			rpolated Dickey-Fuller	
	Test Statistic	1% Critical Value	5% Critical 10% Value	Value
Z(rho) Z(t)	1.016 1.658	-17.540 -3.716	-12.660 -2.986	-10.300 -2.624
MacKinnon	approximate p-value	for $Z(t) = 0.998$	0	
. pperron	D1.pmnfg			
Phillips-1	Perron test for unit	root	Number of obs = Newey-West lags =	
	Test Statistic	1% Critical	rpolated Dickey-Fuller 5% Critical 10% Value	
Z(rho) Z(t)	-38.923 -7.038	-17.472 -3.723	-12.628 -2.989	-10.280 -2.625
MacKinnon	approximate p-value	for $Z(t) = 0.000$	0	
. pperron	wmnfg			
Phillips-1	Perron test for unit	root	Number of obs = Newey-West lags =	

			polated Dickey-Fuller	
	Test Statistic	Value	5% Critical 10% Value	Value
Z(rho) Z(t)	1.155 2.707	-17.540 -3.716	-12.660 -2.986	-10.300 -2.624
MacKinnon ap	pproximate p-value	for $Z(t) = 0.9991$		
. pperron Di	l.wmnfg			
Phillips-Per	rron test for unit	root	Number of obs = Newey-West lags =	
	Test Statistic		polated Dickey-Fuller 5% Critical 10% Value	
Z(rho) Z(t)	-32.575 -4.910	-17.472 -3.723	-12.628 -2.989	-10.280 -2.625
MacKinnon ap	pproximate p-value	for $Z(t) = 0.0000$		
. pperron en	nnfg			
Phillips-Per	rron test for unit	root	Number of obs = Newey-West lags =	
	Test Statistic		polated Dickey-Fuller 5% Critical 10% Value	
Z(rho) Z(t)	-0.626 -0.466	-17.540 -3.716	-12.660 -2.986	-10.300 -2.624
MacKinnon ap	pproximate p-value	for $Z(t) = 0.8985$		
. pperron Di	1.emnfg			
Phillips-Per	rron test for unit	root	Number of obs = Newey-West lags =	
	Statistic	1% Critical Value	polated Dickey-Fuller 5% Critical 10% Value	Critical Value
Z(rho) Z(t)	-42.619	-17.472 -3.723	-12.628	-10.280 -2.625
	pproximate p-value			
. pperron pa	agri			
Phillips-Per	rron test for unit	root	Number of obs = Newey-West lags =	
	Test Statistic	1% Critical	polated Dickey-Fuller 5% Critical 10% Value	Critical
Z(rho) Z(t)	0.680 0.756	-17.540 -3.716		-10.300 -2.624
	pproximate p-value			
. pperron Di	l.pagri			
Phillips-Per	rron test for unit	root	Number of obs =	29

			Newey-West lags	s =	3
	Test Statistic	-	polated Dickey-Full 5% Critical Value		
Z(rho) Z(t)	-24.706 -4.100	-17.472 -3.723	-12.628 -2.989	-10.28 -2.62	-
MacKinnon	approximate p-value	for $Z(t) = 0.0010$			
. pperron	wagri				
Phillips-P	erron test for unit	root	Number of obs Newey-West lags		3

	Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10% Critical		
	Statistic	Value	Value	Value		
Z(rho)	2.645	-17.540	-12.660	-10.300		
Z(t)	5.824	-3.716	-2.986	-2.624		

MacKinnon approximate p-value for Z(t) = 1.0000

. pperron D1.wagri

Phillips-Perron test for unit root Number of obs = 29 Newey-West lags =

Test 1% Critical 5% Critical 10% Crit	cical
Statistic Value Value Val	Lue
Z(rho) -6.674 -17.472 -12.628 -10	280
Z(t) -1.770 -3.723 -2.989 -2	2.625

MacKinnon approximate p-value for Z(t) = 0.3955

. pperron D2.wagri

Number of obs = 28 Phillips-Perron test for unit root Newey-West lags =

		Inte	rpolated Dickey-F	uller
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(rho)	-42.224	-17.404	-12.596	-10.260
Z(t)	-11.435	-3.730	-2.992	-2.626

MacKinnon approximate p-value for Z(t) = 0.0000

. pperron eagri

Number of obs = Newey-West lags = Phillips-Perron test for unit root

	Inte	erpolated Dickey-F	uller
Test	1% Critical	5% Critical	10% Critical
Statistic	Value	Value	Value

-10.300 -4.939 -17.540 -1.334 -3.716 -12.660 -2.986 Z(rho) Z(t) -2.624

MacKinnon approximate p-value for Z(t) = 0.6132

. pperron D1.eagri

Philli	ps-Perron	t.est.	for	unit.	root.

Number of obs = Newey-West lags =

29 3

		Inte	erpolated Dickey-F	uller
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(rho)	-33.956	-17.472	-12.628	-10.280
Z(t)	-5.377	-3.723	-2.989	-2.625

MacKinnon approximate p-value for Z(t) = 0.0000

Appendix 2.2: Engle-Granger Cointegration Test

. egranger D1.deply D1.wmnfg D1.emnfg D1.pmnfg N (1st step) = 30 N (test) = 29 Engle-Granger test for cointegration ______ 1% Critical 5% Critical 10% Critical Test Value Statistic Value Value Value Value Statistic -5.313 -4.497 -5.186 -4.105 Critical values from MacKinnon (1990, 2010) . egranger D1.lnremit D1.wmnfg D1.emnfg D1.pmnfg Replacing variable _egresid... N (1st step) = 30 N (test) = 29 Engle-Granger test for cointegration Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Statistic Value Value V Z(t) -5.315 -5.313 -4.497 -4.105 Critical values from MacKinnon (1990, 2010) . egranger D1.lnfdinv D1.wmnfg D1.emnfg D1.pmnfg Replacing variable egresid... $N mtext{ (1st step)} = 30$ $N mtext{ (test)} = 29$ Engle-Granger test for cointegration Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value -4.497 -7.755 -5.313 Critical values from MacKinnon (1990, 2010) . egranger D1.deply D1.wagri D1.eagri D1.pagri Replacing variable egresid... N (1st step) = 30 N (test) = 29 Engle-Granger test for cointegration ______ Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ______

-5.313

Z(t)

-6.138

-4.497

Critical values from MacKinnon (1990, 2010)

. egranger D1.lnremit D1.wagri D1.eagri D1.pagri
Replacing variable _egresid...

Engle-Granger test for cointegration

	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
Z(t)	-5.124	-5.313	-4.497	-4.105
Critical val	ues from MacKinno	n (1990, 2010)		
	1.lnfdinv D1.wagr: riable _egresid	i D1.eagri D1.pagri	_	
Engle-Grange:	r test for cointed	gration	N (1st step N (test)	
	Test Statistic		5% Critical Value	10% Critical Value
Z(t)	-7.685	-5.313	-4.497	-4.105
Critical val	ues from MacKinno	n (1990, 2010)		
	1.lnfdinv D1.pmnforiable _egresid	-		

N (1st step) =

N (test)

30

Engle-Gran	ger test for coin	tegration	N (1st ste N (test)	p) = =	30 29
	Test Statistic	1% Critical Value	5% Critical Value	10% Cri Va	tical
Z(t)	-8.272	-4.301	-3.555		3.194

Critical values from MacKinnon (1990, 2010)

. egranger D1.lnfdinv D1.pagri
Replacing variable _egresid...

Engle-Gran	ger test for coint	tegration	N (1st ste N (test)	p) = =	0.0	
	Test Statistic	1% Critical Value	5% Critical Value	10%	Critical Value	
Z(t)	-8.302	-4.301	-3.555		-3.194	

Critical values from MacKinnon (1990, 2010)

Appendix 2.3: Optimal Lag Order Selection

. varsoc D1.deply D1.wmnfg D1.emnfg D1.pmnfg

		ction-order le: 1996 -		a 			Number of	obs =	= 26	_
I	lag	 LL	LR	df	p	FPE	AIC	HQIC	SBIC	
	1	-1050.05 -1034.07 -1015.55						81.1367* 81.3611 81.39	81.2745* 82.0502 82.6304	

| 3 | -999.347 32.404 16 0.009 2.3e+30 80.8728 81.5974 83.389 | 4 | -975.936 46.822* 16 0.000 2.5e+30 80.3028* 81.2503 83.5932 |

Endogenous: D.deply D.wmnfg D.emnfg D.pmnfg

Exogenous: cons

. varsoc D1.lnremit D1.wmnfg D1.emnfg D1.pmnfg

Selection-order criteria

Endogenous: D.lnremit D.wmnfg D.emnfg

Exogenous: _cons

. varsoc D1.lnfdinv D1.wmnfg D1.emnfg D1.pmnfg

Selection-order criteria

Endogenous: D.lnfdinv D.wmnfg D.emnfg D.pmnfg

Exogenous: cons

. varsoc D1.deply D1.wagri D1.eagri D1.pagri

Selection-order criteria

Endogenous: D.deply D.wagri D.eagri D.pagri

Exogenous: _cons

. varsoc D1.lnremit D1.wagri D1.eagri D1.pagri

Selection-order criteria

Endogenous: D.lnremit D.wagri D.eagri D.pagri

Exogenous: _cons

. varsoc D1.lnfdinv D1.wagri D1.eagri D1.pagri

Selection-order criteria

Sample	e: 1996 -	2021				Number of	obs =	= 26
	LL	LR	df	р 	FPE	AIC	HQIC	SBIC
0 1 2 3	-890.312 -870.736 -856.266 -832.082 -818.891	39.151 28.94 48.368	16 16 16	0.001 0.024 0.000	8.8e+24 6.8e+24 8.5e+24 6.0e+24* 1.4e+25	68.7932 68.5182 68.6359 68.0063* 68.2224	68.849 68.7969 69.1375 68.7309* 69.1699	68.9868* 69.4859 70.3778 70.5225 71.5128

Endogenous: D.lnfdinv D.wagri D.eagri D.pagri
Exogenous: _cons

. varsoc D1.lnfdinv D1.pmnfg

Selection-order criteria

Sampl	.e: 1996 -	2021				Number of	obs =	= 26
	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0 1 2 3	-483.229	8.2387 2.4929 3.692	4 4 4	0.083 0.646 0.449	5.6e+13 5.5e+13* 6.9e+13 8.3e+13 1.1e+14	37.3253 37.3161* 37.5279 37.6936 37.958	37.3532* 37.3997 37.6673 37.8887 38.2089	37.4221* 37.6064 38.0118 38.371 38.829

Endogenous: D.lnfdinv D.pmnfg
Exogenous: _cons

. varsoc D1.lnfdinv D1.pagri

Selection-order criteria

	Le: 1996 -					Number of	obs =	= 26
lag	 LL +	LR	df	р	FPE	AIC	HQIC	SBIC
0 1 2 3	-447.715 -445.324 -444.408 -439.449 -438.292	1.8317 9.9179*	4 4	0.310 0.767 0.042 0.678	3.6e+12* 4.1e+12 5.2e+12 5.0e+12 6.4e+12	34.5935* 34.7172 34.9545 34.8807 35.0994	34.6213* 34.8008 35.0938 35.0758 35.3502	34.6902* 35.0076 35.4384 35.5582 35.9704

Endogenous: D.lnfdinv D.pagri
Exogenous: _cons

Appendix 3: VAR(p) Results for Equation 2

Appendix 3.1: VAR(p) for Capital-Intensive Sector

. var D1.deply D1.wmnfg D1.emnfg D1.pmnfg, lags(1/4) lutstats

Vector autoregression

Sample: 1996	- 20	021		No. of obs	=	26
Log likelihood	=	-975.936	(lutstats)	AIC	=	68.64357
FPE	=	2.46e+30		HQIC	=	69.53535
<pre>Det(Sigma_ml)</pre>	=	4.71e+27		SBIC	=	71.74042

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_deply	17	135.902	0.6880	57.32487	0.0000
D wmnfg	17	5.1823	0.7582	81.51867	0.0000

D_emnfg	17	177266	0.8154	114.8341	0.0000
D_pmnfg	17	1.2e+07	0.7026	61.42426	0.0000

	Coef.	Std. Err.	Z 	P> z 	[95% Conf.	Interval]
D_deply						
deply LD.	 5673889	.2419161	-2.35	0.019	-1.041536	093242
L2D.	.0716907	.1977355	0.36	0.019	3158637	.4592451
L3D.	.1526657	.1905212	0.80	0.423	220749	.5260803
L4D.	.6202917	.2656991	2.33	0.020	.0995311	1.141052
wmnfg						
LD.	-12.19063	5.186552	-2.35	0.019	-22.35609	-2.025174
L2D.	-4.55928	6.773131	-0.67	0.501	-17.83437	8.715812
L3D.	-9.962252	6.012334	-1.66	0.098	-21.74621	1.821706
L4D.	-10.03403	6.414649	-1.56	0.118	-22.60651	2.538449
emnfg						
LD.	000197	.0001913	-1.03	0.303	0005719	.000178
L2D.		.0002022	0.65	0.519	0002658	.0005267
L3D.	.000342	.0002487	1.38	0.169	0001453	.0008294
L4D.	0002917	.0002103	-1.39	0.165	0007039	.0001205
pmnfg						
LD.	8.14e-06 8.51e-07	3.57e-06	2.28	0.023	1.15e-06	.0000151
L2D. L3D.	8.51e-07 2.39e-06	5.05e-06 3.76e-06	0.17 0.64	0.866 0.525	-9.05e-06 -4.97e-06	.0000108 9.75e-06
L4D.	-4.66e-06	5.08e-06	-0.92	0.323	0000146	5.28e-06
H4D.	1.000 00	3.000 00	0.52	0.330		3.200 00
_cons	238.5109	56.37562	4.23	0.000	128.0167	349.0051
D_wmnfg						
deply						
LD.		.0092249	0.62	0.535 0.671	0123591 0179857	.0238019
L2D. L3D.	0032072 .0223525	.0075402 .0072651	-0.43 3.08	0.071	.0081132	.0115713
L4D.	.0301669	.0101318	2.98	0.002	.010309	.0500249
wmnfg						
LD.	0879403	.197777	-0.44	0.657	475576	.2996954
L2D.	184141	.2582774	-0.71	0.476	6903554	.3220735
L3D.	.041795	.2292662	0.18	0.855	4075585	.4911486
L4D.	.1821397	.2446075	0.74	0.457	2972822	.6615617
emnfg						
LD.		7.29e-06	0.06	0.955	0000139	.0000147
L2D.		7.71e-06	5.73	0.000	.000029	.0000593
L3D.		9.48e-06	1.92	0.055	-4.18e-07	.0000368
L4D.	4.93e-06	8.02e-06	0.61	0.539	0000108	.0000206
pmnfg				_	_	_
LD.		1.36e-07	0.15	0.878	-2.46e-07	2.88e-07
L2D.	4.18e-07 3.73e-08	1.93e-07	2.17	0.030	4.02e-08	7.96e-07
L3D. L4D.	'	1.43e-07 1.94e-07	0.26 -2.43	0.795 0.015	-2.43e-07 -8.50e-07	3.18e-07 -9.09e-08
<u> 14</u> 0.	-4.70e-07 	1.946-07	-2.45	0.013	-8.30e-07	
_cons	-1.794803	2.149752	-0.83	0.404	-6.008239	2.418633
D_emnfg	 					
deply		045 5 (5 5		0 = 5 =	040 077	404 -
LD.		315.5465	-0.62	0.538	-812.6064	424.313
L2D. L3D.		257.9188 248.5088	-0.94 2.42	0.347 0.016	-748.2263 113.2264	262.7969 1087.363
L3D.	-89.11343	346.568	-0.26	0.016	-768.3743	590.1475
T17D •	07.11040	5 10 . 500	0.20	0.101	, 50 • 5 / 45	000.1110

wmnfq	I					
LD.	20761.71	6765.147	3.07	0.002	7502.264	34021.15
L2D.		8834.622	-2.30	0.002	-37656.94	-3025.862
L3D.	21031.93	7842.266	2.68	0.007	5661.373	36402.49
L4D.		8367.031	-3.53	0.000	-45971.01	-13172.86
п4р.	29371.94	0307.031	3.33	0.000	43971.01	13172.00
emnfq						
LD.	.2010146	.2495256	0.81	0.420	2880465	.6900757
L2D.	.5086543	.2637117	1.93	0.054	0082112	1.02552
L3D.	1372902	.3243345	-0.42	0.672	7729742	.4983938
L4D.	1355219	.2743387	-0.49	0.621	6732159	.4021722
pmnfg						
LD.	0039307	.0046563	-0.84	0.399	0130569	.0051956
L2D.	.011273	.0065912	1.71	0.087	0016455	.0241914
L3D.	0166024	.0048991	-3.39	0.001	0262045	0070003
L4D.	0015093	.0066202	-0.23	0.820	0144847	.011466
_cons	148890.1	73534.27	2.02	0.043	4765.583	293014.6
D pmnfg	+					
deply	 					
LD.	 - 16291.56	21532.28	-0.76	0.449	-58494.06	25910.93
L2D.	1 -12635.57	17599.88	-0.72	0.473	-47130.71	21859.57
L3D.		16957.76	-0.72	0.473	-38496.49	27976.7
L4D.		23649.13	1.33	0.730	-14896.12	77806.77
14₽.	31433.32	23049.13	1.33	0.103	-14090.12	77000.77
wmnfg	! 					
LD.	798701.8	461640.5	1.73	0.084	-106097.1	1703501
L2D.	-392374	602857.5	-0.65	0.515	-1573953	789205
L3D.	224648.3	535141.1	0.42	0.675	-824209	1273506
L4D.	-1577070	570950	-2.76	0.006	-2696111	-458028.3
emnfg						
LD.	2.466085	17.02714	0.14	0.885	-30.9065	35.83867
L2D.	22.73925	17.99518	1.26	0.206	-12.53066	58.00915
L3D.	11.18948	22.13196	0.51	0.613	-32.18837	54.56733
L4D.	-13.20162	18.72034	-0.71	0.481	-49.89282	23.48958
pmnfg	 					
LD.	 0790443	.3177393	-0.25	0.804	7018019	.5437133
L2D.		.4497682	1.26	0.209	3170689	1.44599
L3D.	312044	.3343065	-0.93	0.209	9672727	.3431847
L3D. L4D.	1525213	.4517503	-0.93	0.331	-1.037936	.732893
ъ4₽.	1525213	.401/303	-0.34	0.730	-1.03/930	. /32093
cons	1.13e+07	5017837	2.26	0.024	1498435	2.12e+07

Appendix 3.2: VAR(p) for Labor-Intensive Sector

. var D1.deply D1.wagri D1.eagri D1.pagri, lags(1/4) lutstats

Vector autoregression

 Sample:
 1996 - 2021
 No. of obs
 =
 26

 Log likelihood = -944.1188
 (lutstats)
 AIC
 =
 66.19609

 FPE
 =
 2.13e+29
 HQIC
 =
 67.08787

 Det(Sigma_ml)
 =
 4.08e+26
 SBIC
 =
 69.29294

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_deply	17	108.575	0.8008	104.5458	0.0000
D_wagri	17	1.77194	0.9671	764.4382	0.0000
D_eagri	17	345011	0.5448	31.12218	0.0130
D_pagri	17	2.8e+06	0.7551	80.1546	0.0000

	Coef. +	Std. Err.	Z 	P> z 	. 95% Conf.	Interval]
D_deply	<u> </u>					
deply LD.	 3522475	.1579439	-2.23	0.026	6618119	0426831
L2D.	1830042	.1739783	-1.05	0.293	5239954	.1579869
L3D.	.1806983	.1812635	1.00	0.319	1745715	.5359681
L4D.	.0039929	.1917471	0.02	0.983	3718244	.3798103
wagri	 					
LD.	-15.7817	5.978411	-2.64	0.008	-27.49917	-4.064232
L2D.	-22.19663	9.00839	-2.46	0.014	-39.85275	-4.540508
L3D. L4D.	19.89852 -8.36883	10.40612 11.81717	1.91 -0.71	0.056 0.479	4971055 -31.53005	40.29414 14.79239
212.		11.01/1/	0.71	0.173	01.00000	11.,3203
eagri LD.	 0001901	.0000693	-2.74	0.006	000326	0000542
LD.	0001901	.0000893	-0.99	0.322	000326	.0000783
L3D.	.0000312	.0000655	0.48	0.634	0000972	.0001596
L4D.	-9.25e-06	.0000786	-0.12	0.906	0001633	.0001448
pagri	 					
LD.	7.80e-07	8.69e-06	0.09	0.929	0000163	.0000178
L2D.	.0000167	8.42e-06	1.98	0.047	2.08e-07	.0000332
L3D. L4D.	3.17e-06 .000021	7.72e-06 8.34e-06	0.41 2.52	0.681 0.012	000012 4.70e-06	.0000183
_cons	121.4181 +	46.60444	2.61	0.009	30.07509	212.7611
D_wagri						
deply LD.	 .006036	.0025776	2.34	0.019	.000984	.0110881
L2D.	.0162806	.0028770	5.73	0.000	.0107156	.0218455
L3D.	.0180444	.0029582	6.10	0.000	.0122465	.0238424
L4D.	.0344439	.0031293	11.01	0.000	.0283106	.0405771
wagri						
LD.	3483496	.097567	-3.57	0.000	5395773	1571218
L2D. L3D.	1915099 .8745961	.1470159 .1698267	-1.30 5.15	0.193 0.000	4796558 .541742	.0966359 1.20745
L4D.	1.237102	.1928548	6.41	0.000	.8591133	1.61509
eagri LD.		1.13e-06	-3.55	0.000	-6.24e-06	-1.80e-06
L2D.		1.32e-06	-5.46	0.000	-9.78e-06	-4.62e-06
L3D.		1.07e-06	-1.57	0.116	-3.78e-06	4.14e-07
L4D.	-1.84e-06	1.28e-06	-1.43	0.152	-4.35e-06	6.76e-07
pagri						
LD.		1.42e-07	-4.67	0.000	-9.40e-07	
L2D.	3.41e-07 6.33e-08	1.37e-07 1.26e-07	2.48	0.013	7.19e-08 -1.84e-07	6.10e-07
L3D. L4D.		1.36e-07	0.50 -1.14	0.615 0.255	-1.64e-07 -4.22e-07	3.10e-07 1.12e-07
	1 504034		6 04		6 005640	2 104007
_cons	-4.594934 +	.760579 	-6.04 	0.000 	-6.085642 	-3.104227
D_eagri						
deply LD.		501.8856	-0.73	0.467	-1348.378	618.977
L2D.		552.8366	-1.37	0.171	-1840.008	327.0717
L3D.		575.9861	0.18	0.860	-1027.611	1230.214
L4D.	-314.1808	609.2991	-0.52	0.606	-1508.385	880.0235
wagri						
LD.	•	18997.11	-2.43	0.015	-83346.4	-8879.096
L2D. L3D.		28625.23 33066.68	-0.40 0.35	0.692 0.723	-67446.75 -53096.49	44762.09 76522.53
. ИСП	1 1113.02	22000.00	0.33	0.123	55050.45	10022.03

eagri LD. 3848479	L4D.	1787.697	37550.45	0.05	0.962	-71809.84	75385.23
LD	eagri	 -					
L2D.	-		220284	-1 75	0 081	- 8165967	0469008
L3D. 0720986 .2082053 -0.35 0.729 4801735 .3359764 L4D. 0948602 .2497487 -0.38 0.704 5843586 .3946383 pagri							
Dagri							
pagri LD. .0106711		'					
LD. .0106711 .0276104 0.39 0.699 0434443 .0647865 L2D. .0472978 .026754 1.77 0.077 005139 .0997346 L3D. .0454401 .0245405 1.85 0.064 0026583 .0935385 L4D. .0133071 .026496 0.50 0.616 0386241 .0652382 .066478 .0662382 .066442 .0662442 .0662442 .0662442 .0662442 .0662442 .0662442 .0666442							
L2D. .0472978 .026754 1.77 0.077 005139 .0997346 L3D. .0454401 .0245405 1.85 0.064 0026583 .0935385 L4D. .0133071 .026496 0.50 0.616 0386241 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .0652382 .065142 .06518.241	pagri						
L3D. .0454401	LD.	.0106711	.0276104	0.39	0.699	0434443	.0647865
L4D. .0133071	L2D.	.0472978	.026754	1.77	0.077	005139	.0997346
cons 19539.43	L3D.	•				0026583	
D_pagri deply LD. -1643.688	L4D.	.0133071	.026496	0.50	0.616	0386241	.0652382
deply LD. -1643.688	_cons	 19539.43	148091.1	0.13	0.895	-270713.9	309792.7
deply LD. -1643.688		+					
LD. -1643.688		 					
L2D. 6518.241			4073 797	-0 40	0 687	-9628 184	6340 809
L3D. 8267.243		'					
Wagri LD. -474633.2 154199.2 -3.08 0.002 -776858.1 -172408.3 L2D. 304119.5 232350.5 1.31 0.191 -151279.2 759518.2 L3D. 183773.8 268401.7 0.68 0.494 -342283.9 709831.6 L4D. -174011.4 304796.4 -0.57 0.568 -771401.4 423378.6 eagri LD. -3.854312 1.788042 -2.16 0.031 -7.35881 3498151 L2D. .5697102 2.08176 0.27 0.784 -3.510464 4.649885 L3D. -5.123534 1.689999 -3.03 0.002 -8.435872 -1.811197 L4D. 6471807 2.027206 -0.32 0.750 -4.620431 3.32607 pagri LD. .4765296 .2241132 2.13 0.033 .0372758 .9157835 L2D. 2113215 .2171616 -0.97 0.331 6369505 .2143074 L3D. .455857 .1991945 2.29 0.022 .0654429 .8462711 L4D. 0308886 .2150675 -0.14 0.886 4524132 .390636		•					
wagri LD. -474633.2		•					
LD. -474633.2							
L2D. 304119.5 232350.5 1.31 0.191 -151279.2 759518.2 13D. 183773.8 268401.7 0.68 0.494 -342283.9 709831.6 14D. -174011.4 304796.4 -0.57 0.568 -771401.4 423378.6	wagri						
L3D. 183773.8	LD.	-474633.2	154199.2	-3.08	0.002	-776858.1	-172408.3
Eagri LD. -3.854312	L2D.	304119.5	232350.5			-151279.2	759518.2
eagri LD. -3.854312							
LD. -3.854312	L4D.	-174011.4	304796.4	-0.57	0.568	-771401.4	423378.6
LD. -3.854312	ozari	 					
L2D. .5697102	_	ı ı =3 854312	1 788042	-2 16	0 031	-7 35881	- 3498151
L3D. -5.123534							
L4D. 6471807 2.027206 -0.32 0.750 -4.620431 3.32607 pagri LD. .4765296 .2241132 2.13 0.033 .0372758 .9157835 L2D. 2113215 .2171616 -0.97 0.331 6369505 .2143074 L3D. .455857 .1991945 2.29 0.022 .0654429 .8462711 L4D. 0308886 .2150675 -0.14 0.886 4524132 .390636		'					
LD. .4765296 .2241132 2.13 0.033 .0372758 .9157835 L2D. 2113215 .2171616 -0.97 0.3316369505 .2143074 L3D. .455857 .1991945 2.29 0.022 .0654429 .8462711 L4D. 0308886 .2150675 -0.14 0.8864524132 .390636		'					
LD. .4765296 .2241132 2.13 0.033 .0372758 .9157835 L2D. 2113215 .2171616 -0.97 0.3316369505 .2143074 L3D. .455857 .1991945 2.29 0.022 .0654429 .8462711 L4D. 0308886 .2150675 -0.14 0.8864524132 .390636							
L2D. 2113215							
L3D. .455857 .1991945 2.29 0.022 .0654429 .8462711 L4D. 0308886 .2150675 -0.14 0.8864524132 .390636							
L4D. 0308886 .2150675 -0.14 0.8864524132 .390636		'					
_cons 1166650 1202053 0.97 0.332 -1189331 3522632	L4D.	0308886	.2150675	-0.14	0.886	4524132	.390636
	2022	1166650	1202052	0 07	U 333	_1100221	2522622
		1 1100020	1202033	U.91		-TI0922I	3322032

Appendix 4:VAR(p) Results for Equation 3

Appendix 4.1: VAR(p) for Capital-Intensive Sector

. var D1.lnremit D1.wmnfg D1.emnfg D1.pmnfg, lags(1/4) lutstats

Vector autoregression

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_lnremit	17	.117587	0.4305	19.65201	0.2363
D_wmnfg	17	6.25612	0.6476	47.77677	0.0001
D_emnfg	17	176480	0.8170	116.0901	0.0000
D_pmnfg	17	1.1e+07	0.7518	78.76545	0.0000

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

66

	+					
D lnremit	I					
lnremit	! 					
LD.		.1829306	0.50	0.620	2677133	.4493615
L2D.		.1642067	0.30	0.768	2733977	.3702808
L3D.		.1925767	2.05	0.041	.0169979	.7718846
L4D.	2770127	.1786505	-1.55	0.121	6271613	.0731359
	ĺ					
wmnfg						
LD.	.0069103	.0041968	1.65	0.100	0013153	.0151358
L2D.	.0008581	.0041294	0.21	0.835	0072354	.0089516
L3D.	0001756	.0035811	-0.05	0.961	0071945	.0068432
L4D.	002803	.0041775	-0.67	0.502	0109908	.0053847
emnfg						
LD.	-1.23e-07	1.73e-07	-0.71	0.475	-4.62e-07	2.15e-07
L2D.	-9.49e-08	1.82e-07	-0.52	0.601	-4.51e-07	2.61e-07
L3D.		2.08e-07	-2.22	0.026 0.150	-8.71e-07	-5.43e-08 1.01e-07
L4D.	-2.79e-07	1.94e-07	-1.44	0.150	-6.58e-07	1.01e-07
pmnfg	 					
LD.		2.26e-09	0.47	0.636	-3.36e-09	5.51e-09
L2D.	1 6.69e-09	3.78e-09	1.77	0.030	-7.26e-10	1.41e-08
L3D.	-3.28e-09	3.26e-09	-1.01	0.314	-9.66e-09	3.10e-09
L4D.	-7.24e-09	4.18e-09	-1.73	0.083	-1.54e-08	9.43e-10
212.		1.100 03	1.70	0.000	1,010 00	3.100 10
_cons	.1153577	.0575856	2.00	0.045	.002492	.2282233
D wmnfq	I					
lnremit	! 					
LD.	•	9.732692	-2.38	0.017	-42.21273	-4.061278
L2D.	-7.095086	8.736501	-0.81	0.417	-24.21831	10.02814
L3D.	9709981	10.2459	-0.09	0.924	-21.0526	19.11061
L4D.	6.90908	9.504974	0.73	0.467	-11.72033	25.53849
wmnfg						
LD.		.223287	-0.23	0.821	4882154	.3870535
L2D.		.2197017	-0.76	0.450	5966046	.2646103
L3D.		.19053	0.83	0.409	2161791	.5306847
L4D.	5298633	.2222605	-2.38	0.017	9654859	0942407
omn for						
emnfg LD.	.0000199	9.19e-06	2.16	0.031	1.86e-06	.0000379
L2D.			4.28			
	3.09e-06					
	-6.59e-06					
±10.	1	.0000103	0.01	0.022	.0000200	.0000130
pmnfq	İ					
LD.	-1.32e-07	1.20e-07	-1.10		-3.68e-07	
L2D.	4.18e-07 1.00e-07	2.01e-07	2.08	0.038	2.38e-08 -2.39e-07	8.12e-07
L3D.	1.00e-07	2.01e-07 1.73e-07	0.58			
L4D.	-6.84e-08	2.22e-07	-0.31	0.758	-5.04e-07	3.67e-07
cons	 6.479677	3.0638	2.11	0.034	.4747391	12.48462
	+					
D_emnfg						
lnremit						
LD.					-748550	
L2D.						828511.9
L3D.		289029.2		0.015		
L4D.	229433.8	268128.1	0.86	0.392	-296087.7	754955.3
E	1					
wmnfg LD.		6298.757	2.28	0.022	2041.285	26731.96
		6197.619	-2.10		-25162.73	
1.711			∠ • ⊥ ∪	0.000	2 U 1 U 2 • 1 J	000.000
L2D.				0 003		26408 75
L3D.	15874.52	5374.707	2.95	0.003	5340.291	
	15874.52			0.003		26408.75 -14382.3

emnfg LD. L2D. L3D. L4D.	.1657463 .5362444 .0662097 2963248	.2592862 .2724946 .3128256 .2904581	0.64 1.97 0.21 -1.02	0.523 0.049 0.832 0.308	3424453 .0021648 5469173 8656123	.6739379 1.070324 .6793367 .2729626
pmnfg LD. L2D. L3D. L4D.	0039427 0003301 0102206 .0073448	.0033964 .0056755 .0048856 .0062665	-1.16 -0.06 -2.09 1.17	0.246 0.954 0.036 0.241	0105995 0114539 0197961 0049373	.002714 .0107937 000645 .0196268
_cons	183969.3	86427.49	2.13	0.033	14574.49	353364
D_pmnfg LD. L2D. L3D. L4D.	-5555346 -1.28e+07	1.72e+07 1.54e+07 1.81e+07 1.68e+07	-1.33 -0.36 -0.70 -1.63	0.183 0.719 0.481 0.104	-5.66e+07 -3.58e+07 -4.82e+07 -6.02e+07	1.08e+07 2.47e+07 2.27e+07 5597024
wmnfg LD. L2D. L3D. L4D.	-344801.4	394381.4 388048.9 336524.3 392568.5	2.70 -0.89 1.59 -4.72	0.007 0.374 0.111 0.000	293237.2 -1105363 -123874 -2622935	1839184 415760.5 1195277 -1084095
emnfg LD. L2D. L3D. L4D.	01.20103	16.23458 17.06159 19.58682 18.18633	1.05 1.83 0.62 -0.34	0.292 0.067 0.534 0.732	-14.70028 -2.208709 -26.21773 -41.87657	48.9381 64.6715 50.5612 29.41255
pmnfg LD. L2D. L3D. L4D.	4772565 .3174088 652477 0711387	.2126543 .3553577 .3058983 .3923602	-2.24 0.89 -2.13 -0.18	0.025 0.372 0.033 0.856	8940512 3790795 -1.252027 8401506	0604617 1.013897 0529274 .6978731
_cons	2.06e+07	5411448	3.81	0.000	9988100	3.12e+07

Appendix 4.2: VAR(p) for Labor-Intensive Sector

. var D1.lnremit D1.wagri D1.eagri D1.pagri, lags(1/4) lutstats

Vector autoregression

Sample: 1996 Log likelihood FPE Det(Sigma_ml)	= -772.4874 = 3.92e+23		(lutsta	ts)		=	= 26 = 52.99368 = 53.88546 = 56.09053
Equation	Parms	RMSE	R-sq	cl	hi2	P>chi2	
D_lnremit D_wagri D_eagri D_pagri	17 17	4.11526	0.7512	120 78.	.5448 48916	0.0000	
ļ	Coef.					· -	. Interval]
D_lnremit lnremit	.3884934						.8358289

L2D.	0751885	.1629312	-0.46	0.644	3945278	.2441507
L3D.		.1552518	1.25	0.210	1096567	.4989193
L4D.	2614719	.1531237	-1.71	0.088	5615888	.038645
wagri						
LD.	.0005464	.0065062	0.08	0.933	0122055	.0132984
L2D.	.0120365	.0089013	1.35	0.176	0054097	.0294827
L3D.		.008392	-0.97	0.333	0245691	.008327
L4D.	0047548	.0102197	-0.47	0.642	0247851	.0152755
eagri 			0.00	0 550	1 64 00	1 00 00
LD.	-2.10e-08	7.28e-08	-0.29	0.773	-1.64e-07	1.22e-07
L2D.	7.78e-08	9.19e-08 6.81e-08	0.85	0.397 0.100	-1.02e-07	2.58e-07 2.46e-07
L3D. L4D.	1.12e-07 1.04e-07	7.59e-08	1.65 1.37	0.100	-2.14e-08 -4.45e-08	2.46e-07 2.53e-07
Д4₽.	1.046-07	7.39e-00	1.37	0.109	-4.4Je-00	2.33e-07
pagri	I 					
LD.	1.72e-08	9.09e-09	1.89	0.059	-6.58e-10	3.50e-08
L2D.	-4.26e-09	8.43e-09	-0.51	0.613	-2.08e-08	1.23e-08
L3D.	5.40e-09	7.62e-09	0.71	0.478	-9.53e-09	2.03e-08
L4D.	-1.96e-08	1.03e-08	-1.90	0.058	-3.98e-08	6.28e-10
_cons	.06164	.0571405	1.08	0.281	0503533	.1736334
	+					
D_wagri						
lnremit	•	0 202072	0 50	0 010	27 22617	4 (00(40
LD. L2D.		8.302072 5.926597	-2.52 1.42	0.012 0.157	-37.22617 -3.227743	-4.682648 20.00409
L3D.	1.63424	5.647263	0.29	0.137	-9.434191	12.70267
L4D.	-4.384451	5.569851	-0.79	0.431	-15.30116	6.532256
	4.504451	3.303031	0.75	0.431	13.30110	0.552250
wagri						
LD.	1163817	.2366629	-0.49	0.623	5802324	.3474691
L2D.	.1079147	.3237832	0.33	0.739	5266887	.7425182
L3D.	.6447635	.3052582	2.11	0.035	.0464685	1.243059
L4D.	014878	.3717413	-0.04	0.968	7434776	.7137216
eagri						
LD.	-7.06e-06	2.65e-06	-2.67	0.008	0000122	-1.87e-06
L2D.	0000113	3.34e-06	-3.39	0.001	0000179	-4.79e-06
L3D.	1.93e-06	2.48e-06	0.78	0.436	-2.93e-06	6.79e-06
L4D.	9.70e-07	2.76e-06	0.35	0.726	-4.44e-06	6.38e-06
nagri	 					
pagri LD.		3.31e-07	-1.58	0.114	-1.17e-06	1.26e-07
L2D.		3.06e-07	3.52	0.000	4.78e-07	1.68e-06
L3D.	•	2.77e-07	-0.09	0.929	-5.68e-07	5.18e-07
L4D.		3.75e-07	1.85	0.065	-4.28e-08	1.43e-06
_cons	1.444445	2.078478	0.69	0.487	-2.629297	5.518187
	+					
D_eagri	1					
lnremit	'	E4.4505 :		0 0 = -		00707
LD.		514623.1	-1.89	0.058	-1983563	33722.72
L2D.		367373.8	-0.16	0.871	-779819.3	660259.7
L3D. L4D.		350058.6 345260.1	-2.43 4.35	0.015 0.000	-1535224 824176.7	-163018.9 2177571
Ц4Џ.	1 1300674	343200.1	4.33	0.000	0241/0./	21//3/1
wagri	! 					
LD.		14670.1	-4.86	0.000	-100016.5	-42510.74
L2D.		20070.45	-1.39	0.165	-67219.94	11454.79
L3D.		18922.13	1.78	0.075	-3433.258	70740.15
L4D.		23043.25	2.06	0.039	2311.985	92639.85
	I					
eagri						
LD.		.1640618	-1.54	0.123	5745848	.0685255
L2D.		.2071187	-1.19	0.234	6522211	.1596694
L3D.	2951443	.1535484	-1.92	0.055	5960935	.005805

L4D.	13144	.1711922	-0.77	0.443	4669706	.2040906
pagri						
LD.	.0092648	.0205019	0.45	0.651	0309182	.0494477
L2D.	.035197	.0189986	1.85	0.064	0020396	.0724336
L3D.	.0661352	.0171794	3.85	0.000	.0324642	.0998061
L4D.	.017799	.0232643	0.77	0.444	0277982	.0633962
I						
_cons	-137086.3	128839.3	-1.06	0.287	-389606.6	115434.1
D_pagri						
lnremit						
LD.	2618805	6096534	0.43	0.668	-9330182	1.46e+07
L2D.	-1350566	4352131	-0.31	0.756	-9880586	7179453
L3D.	-8434784	4147004	-2.03	0.042	-1.66e+07	-306804.1
L4D.	-2066286	4090158	-0.51	0.613	-1.01e+07	5950276
. !						
wagri	006006 4	172700 0	1 70	0 000	626010 1	4.4.2.2.7
LD.	-296286.4	173790.8	-1.70	0.088	-636910.1	44337.23
L2D.	204924.9	237766.6	0.86	0.389	-261089.1	670938.9
L3D.	-59844.68	224162.9	-0.27	0.789	-499196	379506.6
L4D.	-286463.9	272984.1	-1.05	0.294	-821502.9	248575.1
eagri						
LD.	-5.102439	1.943574	-2.63	0.009	-8.911774	-1.293104
L2D.	.6963282	2.453653	0.28	0.777	-4.112743	5.505399
L3D.	-5.455042	1.819026	-3.00	0.003	-9.020268	-1.889817
L4D.	-2.229855	2.028046	-1.10	0.272	-6.204751	1.745042
pagri	2660012	2420774	1 51	0 121	1001407	0.400100
LD. L2D.	.3668812 2100181	.2428774	1.51 -0.93	0.131 0.351	1091497 6511449	.8429122 .2311086
L3D.	.5270011	.2035173	2.59	0.010	.1281145	.9258876
L4D.	.1468817	.2756028	0.53	0.010	3932898	.6870533
±4₽. ∣	.140001/	.2/30028	0.53	0.394	3932098	.00/0333
_cons	3554450	1526307	2.33	0.020	562943.1	6545958

Appendix 5: VAR(p) Results for Equation 4

Appendix 5.1: VAR(p) for Capital-Intensive Sector

. var D1.lnfdifl D1.wmnfg D1.emnfg D1.pmnfg, lags(1/4) lutstats

Vector autoregression

Sample: 1996 - 2	021		No. of obs	=	26
Log likelihood =	-850.4616	(lutstats)	AIC	=	58.99169
FPE =	1.58e+26		HQIC	=	59.88347
<pre>Det(Sigma_ml) =</pre>	3.03e+23		SBIC	=	62.08854

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_lnfdifl D_wmnfg D_emnfg D_pmnfg	17 17 17 17	.725067 5.96993 175432 9.5e+06	0.3517 0.6791 0.8192 0.8174	14.10764 55.01982 117.793 116.39	0.5907 0.0000 0.0000 0.0000

					[95% Conf.	-
D_lnfdifl lnfdifl						
LD.	453329	.2557641	-1.77	0.076	9546175	.0479594
L2D.	2276708	.2554111	-0.89	0.373	7282675	.2729258
L3D.	3768344	.1959098	-1.92	0.054	7608106	.0071417

L4D.	0846988 	.2030841	-0.42	0.677	4827363	.3133387
wmnfg LD. L2D. L3D. L4D.		.0228325 .0259348 .0212922 .0274022	0.21 -0.61 0.18 0.45	0.832 0.544 0.859 0.650	0399193 0665868 0379492 0412711	.0495823 .0350759 .0455149 .0661434
emnfg LD. L2D. L3D. L4D.	1.51e-07	1.10e-06 1.21e-06 1.19e-06 1.17e-06	0.14 0.62 0.80 -0.20	0.891 0.537 0.423 0.839	-2.00e-06 -1.63e-06 -1.38e-06 -2.54e-06	2.30e-06 3.13e-06 3.28e-06 2.06e-06
pmnfg LD. L2D. L3D. L4D.	5.38e-10 2.20e-08	1.66e-08 2.42e-08 1.94e-08 2.50e-08	0.03 0.91 -1.30 -0.23	0.974 0.364 0.195 0.822	-3.19e-08 -2.55e-08 -6.33e-08 -5.47e-08	3.30e-08 6.94e-08 1.29e-08 4.34e-08
_cons	0926057 	.2091787	-0.44	0.658	5025884	.317377
D_wmnfg lnfdifl LD. L2D. L3D. L4D.	4.268616 -1.157731 3.913777	2.105866 2.102959 1.613048 1.672118	2.03 -0.55 2.43 1.95	0.043 0.582 0.015 0.051	.1411952 -5.279456 .7522614 0152785	8.396037 2.963993 7.075292 6.539304
wmnfg LD. L2D. L3D. L4D.	.1259204 0812447 .2708846	.187994 .2135377 .1753123 .2256191	0.67 -0.38 1.55 -0.95	0.503 0.704 0.122 0.340	242541 4997709 0727213 6573905	.4943818 .3372814 .6144904 .2270203
emnfg LD. L2D. L3D. L4D.	-6.37e-06 .0000297 -5.27e-06	9.03e-06 9.99e-06 9.79e-06 9.67e-06	-0.71 2.97 -0.54 -0.79	0.480 0.003 0.591 0.432	0000241 .0000101 0000245 0000266	.0000113 .0000492 .0000139
pmnfg LD. L2D. L3D. L4D.	-4.14e-08 3.02e-07	1.36e-07 1.99e-07 1.60e-07 2.06e-07	1.24 -0.18 -0.26 1.47	0.213 0.861 0.796 0.143	-9.76e-08 -4.26e-07 -3.55e-07 -1.02e-07	4.37e-07 3.56e-07 2.72e-07 7.06e-07
_cons	2.719226 +	1.722299 	1.58 	0.114	6564175 	6.09487
D_emnfg lnfdifl LD. L2D. L3D. L4D.	143675.3 146157.5 88026.75	61882.94 61797.54 47401 49136.84	2.32 2.37 1.86 1.76	0.020 0.018 0.063 0.078	22386.97 25036.52 -4877.495 -9682.933	264963.6 267278.4 180931 182929.9
wmnfg LD. L2D. L3D. L4D.	21368.35 -2767.643 16285.12	5524.388 6275.014 5151.726 6630.041	3.87 -0.44 3.16 -3.23	0.000 0.659 0.002 0.001	10540.75 -15066.45 6187.919 -34441.52	32195.95 9531.16 26382.31 -8452.242
emnfg LD. L2D. L3D. L4D.	3566507 0141852 3191028	.2654062 .2935194 .2877036 .2842346	-1.34 -0.05 -1.11 -2.10	0.179 0.961 0.267 0.036	8768373 5894727 8829914 -1.153295	.1635359 .5611022 .2447858 0391162

D_pmnfg	pmnfg LD. L2D. L3D. L4D. _cons	0175997	.004007 .0058587 .0047034 .0060584	-0.51 0.09 -3.74 0.70	0.610 0.928 0.000 0.486	0098974 0109554 0268182 0076576	.0058096 .0120103 0083812 .0160907 277764.3
LD. 1.35e+07 3343403 4.04 0.000 6965249 2.01e+07 L2D. 4225096 3338789 1.27 0.206 -2318811 1.08e+07 L3D. 3909871 2560975 1.53 0.127 -1109548 8929290 L4D. 1262684 2654759 0.48 0.634 -3940548 6465915	D pmnfg						
L2D. 4225096	lnfdifl						
L3D. 3909871 2560975 1.53 0.127 -1109548 8929290 L4D. 1262684 2654759 0.48 0.634 -3940548 6465915 wmnfg LD. 1337645 298470.9 4.48 0.000 752652.9 1922637 L2D. -25794.98 339025.7 -0.08 0.939 -690273.1 638683.2 L3D. 835530.6 278336.8 3.00 0.003 290000.5 1381061 L4D. -1390715 358207 -3.88 0.000 -2092787 -688641.9 emnfg LD. -19.45752 14.33933 -1.36 0.175 -47.5621 8.647056 L2D. -2.861573 15.85823 -0.18 0.857 -33.94313 28.21998 L3D. -18.29095 15.54401 -1.18 0.239 -48.75666 12.17475 L4D. -23.46919 15.35659 -1.53 0.126 -53.56756 6.629173 pmnfg LD. 0639539 .2164879 -0.30 0.7684882623 .3603546 L2D. 1514655 .3165338 -0.48 0.6327718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787	LD.	1.35e+07	3343403	4.04	0.000	6965249	2.01e+07
L4D. 1262684 2654759 0.48 0.634 -3940548 6465915 wmnfg LD. 1337645 298470.9 4.48 0.000 752652.9 1922637 L2D. -25794.98 339025.7 -0.08 0.939 -690273.1 638683.2 L3D. 835530.6 278336.8 3.00 0.003 290000.5 1381061 L4D. -1390715 358207 -3.88 0.000 -2092787 -688641.9 emnfg LD. -19.45752 14.33933 -1.36 0.175 -47.5621 8.647056 L2D. -2.861573 15.85823 -0.18 0.857 -33.94313 28.21998 L3D. -18.29095 15.54401 -1.18 0.239 -48.75666 12.17475 L4D. -23.46919 15.35659 -1.53 0.126 -53.56756 6.629173 pmnfg LD. 0639539 .2164879 -0.30 0.768 4882623 .3603546 L2D. 1514655 .3165338 -0.48	L2D.	4225096	3338789	1.27	0.206	-2318811	1.08e+07
wmnfg LD. 1337645	L3D.	3909871	2560975	1.53	0.127	-1109548	8929290
LD. 1337645	L4D.	1262684	2654759	0.48	0.634	-3940548	6465915
LD. 1337645							
L2D. -25794.98	wmnfg						
L3D. 835530.6 278336.8 3.00 0.003 290000.5 1381061 L4D. -1390715 358207 -3.88 0.000 -2092787 -688641.9 emnfg LD. -19.45752 14.33933 -1.36 0.175 -47.5621 8.647056 L2D. -2.861573 15.85823 -0.18 0.857 -33.94313 28.21998 L3D. -18.29095 15.54401 -1.18 0.239 -48.75666 12.17475 L4D. -23.46919 15.35659 -1.53 0.126 -53.56756 6.629173 pmnfg LD. 0639539 .2164879 -0.30 0.7684882623 .3603546 L2D. 1514655 .3165338 -0.48 0.6327718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787							
EMNFG LD. -1390715 358207 -3.88 0.000 -2092787 -688641.9 EMNFG LD. -19.45752 14.33933 -1.36 0.175 -47.5621 8.647056 L2D. -2.861573 15.85823 -0.18 0.857 -33.94313 28.21998 L3D. -18.29095 15.54401 -1.18 0.239 -48.75666 12.17475 L4D. -23.46919 15.35659 -1.53 0.126 -53.56756 6.629173 pmnfg LD. 0639539 .2164879 -0.30 0.768 4882623 .3603546 L2D. 1514655 .3165338 -0.48 0.632 7718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.176885 1807699 L4D. .52425 .3273207 1.60 0.109 1172867 1.165787							
emnfg LD. -19.45752							
LD. -19.45752	L4D.	-1390715	358207	-3.88	0.000	-2092787	-688641.9
LD. -19.45752	I						
L2D. -2.861573							
L3D. -18.29095							
L4D. -23.46919							
pmnfg LD. 0639539 .2164879 -0.30 0.7684882623 .3603546 L2D. 1514655 .3165338 -0.48 0.6327718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787							
LD. 0639539 .2164879 -0.30 0.7684882623 .3603546 L2D. 1514655 .3165338 -0.48 0.6327718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787	L4D.	-23.46919	15.35659	-1.53	0.126	-53.56756	6.629173
LD. 0639539 .2164879 -0.30 0.7684882623 .3603546 L2D. 1514655 .3165338 -0.48 0.6327718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787							
L2D. 1514655 .3165338 -0.48 0.6327718603 .4689294 L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787							0.000=4.0
L3D. 6788273 .2541156 -2.67 0.008 -1.1768851807699 L4D. .52425 .3273207 1.60 0.1091172867 1.165787							
L4D. .52425 .3273207 1.60 0.1091172867 1.165787							
_cons 1.00e+07 2734429 3.67 0.000 4668429 1.54e+07	L4D.	.52425	.3273207	1.60	0.109	1172867	1.165787
cons 1.00e+0/ 2/34429 3.6/ 0.000 4668429 1.54e+0/		1 00-107	0724400	2 67	0 000	4660400	1 54-107
	_cons	1.00e+0/	2/34429	3.6/	0.000	4668429	1.54e+0/

Appendix 5. 2: VAR(p) for Labor-Intensive Sector

. var D1.lnfdifl D1.wagri D1.eagri D1.pagri, lags(1/4) lutstats

Vector autoregression

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_lnfdifl D_wagri D_eagri	17 17 17 17	.544975 3.96918 293217	0.6338 0.8350 0.6712 0.7858	44.99532 131.5299 53.08516 95.3792	0.0001 0.0000 0.0000
D_pagri	1 /	2.6e+06	0./858	93.3/92	0.0000

LD. L2D. L3D. L4D.	0044584	.0302095 .0389228 .0392126 .0480203	0.19 -0.11 0.00 1.33	0.849 0.909 0.999 0.182	0534565 0807458 0767955 0300373	.0649625 .071829 .076915 .1581989
eagri LD. L2D. L3D. L4D.	-3.14e-07	3.65e-07 4.16e-07 3.80e-07 4.27e-07	-0.86 -0.91 3.56 1.05	0.390 0.365 0.000 0.296	-1.03e-06 -1.19e-06 6.08e-07 -3.91e-07	4.02e-07 4.38e-07 2.10e-06 1.28e-06
pagri LD. L2D. L3D. L4D.	-4.68e-09 2.99e-09 3.88e-08 -7.27e-09	3.87e-08 3.35e-08 3.36e-08 4.26e-08	-0.12 0.09 1.15 -0.17	0.904 0.929 0.249 0.864	-8.04e-08 -6.27e-08 -2.71e-08 -9.07e-08	7.11e-08 6.87e-08 1.05e-07 7.62e-08
_cons	3334512	.1862194	-1.79	0.073	6984345	.0315321
D_wagri lnfdifl LD. L2D. L3D. L4D.	6161584 2.80959 1.351671	1.334213 1.215831 1.047788 1.162671	-0.46 2.31 1.29 -0.67	0.644 0.021 0.197 0.501	-3.231168 .4266049 7019553 -3.061659	1.998851 5.192576 3.405297 1.495929
wagri LD. L2D. L3D. L4D.	.1309604 .7409454 .2328435 .3873103	.2200229 .2834843 .2855946 .3497434	0.60 2.61 0.82 -1.11	0.552 0.009 0.415 0.268	3002765 .1853263 3269115 -1.072795	.5621973 1.296565 .7925985 .2981742
eagri LD. L2D. L3D. L4D.		2.66e-06 3.03e-06 2.77e-06 3.11e-06	-1.35 -2.73 0.46 1.30	0.176 0.006 0.644 0.195	-8.82e-06 0000142 -4.15e-06 -2.07e-06	1.61e-06 -2.32e-06 6.71e-06 .0000101
pagri LD. L2D. L3D. L4D.		2.82e-07 2.44e-07 2.45e-07 3.10e-07	0.17 2.44 -0.59 0.45	0.867 0.015 0.553 0.656	-5.04e-07 1.18e-07 -6.25e-07 -4.70e-07	5.99e-07 1.07e-06 3.35e-07 7.46e-07
_cons	.1725909	1.35628	0.13	0.899	-2.48567	2.830852
D_eagri lnfdifl LD. L2D. L3D. L4D.	-296767.7 -116368.6 -85226.83	98562.65 89817.41 77403.48 85890.31	-3.01 -1.30 -1.10 0.75	0.003 0.195 0.271 0.451	-489946.9 -292407.5 -236934.9 -103601.7	-103588.4 59670.29 66481.2 233082.2
wagri LD. L2D. L3D. L4D.	-66618.18 -25828.96 34825.35	16253.8 20941.91 21097.8 25836.68	-4.10 -1.23 1.65 1.79	0.000 0.217 0.099 0.073	-98475.05 -66874.35 -6525.568 -4339.849	-34761.31 15216.43 76176.28 96938.08
eagri LD. L2D. L3D. L4D.	1995581 4454022	.1965093 .2237827 .2046428 .2299162	-1.02 -1.99 -0.42 -0.38	0.310 0.047 0.677 0.701	5847092 8840082 4864337 5387577	.185593 0067961 .3157513 .3624974
pagri LD. L2D.	017848	.020798	-0.86 2.15	0.391	0586114 .0034689	.0229154

L3D. L4D.	.0504314	.0180868	2.79 1.32	0.005 0.188	.014982 0147088	.0858809
1 • GET	.0301030	.0223073	1.52	0.100	.0147000	.0750005
_cons	-130685.6	100192.8	-1.30	0.192	-327060	65688.73
D pagri						
lnfdifl						
LD.	228206.1	880337.9	0.26	0.795	-1497225	1953637
L2D.	-1283553	802227.5	-1.60	0.110	-2855890	288784
L3D.	532704.3	691349.3	0.77	0.441	-822315.4	1887724
L4D.	-2431896	767151.7	-3.17	0.002	-3935486	-928306.5
1						
wagri	241045 2	1 4 5 1 7 5 1	1 66	0 007	F0FF00 1	42402 71
LD.	-241045.2	145175.1	-1.66	0.097	-525583.1	43492.71
L2D.	398693.3	187048.1	2.13	0.033	32085.75	765300.8
L3D.	-104290	188440.5	-0.55	0.580	-473626.5	265046.5
L4D.	-441868.6	230767	-1.91	0.056	-894163.6	10426.51
eagri						
LD.	-7.799005	1.755174	-4.44	0.000	-11.23908	-4.358928
L2D.	2.960251	1.998773	1.48	0.139	9572724	6.877775
L3D.	-8.79403	1.82782	-4.81	0.000	-12.37649	-5.211569
L4D.	2.662858	2.053557	1.30	0.195	-1.362039	6.687754
1						
pagri						
LD.	.6753438	.185763	3.64	0.000	.3112549	1.039433
L2D.	4101754	.1611028	-2.55	0.011	725931	0944197
L3D.	.769701	.1615469	4.76	0.000	.4530749	1.086327
L4D.	2599256	.2046079	-1.27	0.204	6609497	.1410985
_cons	2105263	894898.3	2.35	0.019	351294.9	3859232

Appendix 6: VAR(p) Results for Equation 5

Appendix 6.1: VAR(p) for Capital-Intensive Sector

. var D1.pmnfg D1.lnfdifl, lags(1/4) lutstats

Vector autoregression

Sample: 1996	- 2	2021		No. of obs	=	26
Log likelihood	=	-475.4546	(lutstats)	AIC	=	32.12844
FPE	=	1.11e+14		HQIC	=	32.35139
Det(Sigma_ml)	=	2.62e+13		SBIC	=	32.90266

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_pmnfg	9	1.4e+07	0.2331	7.901092	0.4432
D_lnfdifl	9	.565829	0.2543	8.866282	0.3537

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
D_pmnfg	+ 					
pmnfg						
LD.	4283786	.1990232	-2.15	0.031	8184569	0383003
L2D.	4367179	.4856249	-0.90	0.368	-1.388525	.5150893
L3D.	.1189689	.399339	0.30	0.766	6637212	.901659
L4D.	.363554	.5710658	0.64	0.524	7557144	1.482822
lnfdifl						
LD.	7281142	5084026	1.43	0.152	-2683365	1.72e+07
L2D.	4451233	5293018	0.84	0.400	-5922891	1.48e+07
L3D.	1446751	4472912	0.32	0.746	-7319996	1.02e+07
L4D.	-1203444	4175308	-0.29	0.773	-9386898	6980010

_cons	 1.19e+07	5003762	2.37	0.018	2071264	2.17e+07
D_lnfdifl	 					
pmnfg						
LD.	-3.02e-10	7.97e-09	-0.04	0.970	-1.59e-08	1.53e-08
L2D.	2.51e-08	1.94e-08	1.29	0.197	-1.30e-08	6.32e-08
L3D.	-1.36e-08	1.60e-08	-0.85	0.396	-4.49e-08	1.78e-08
L4D.	-9.73e-09	2.29e-08	-0.43	0.670	-5.45e-08	3.51e-08
lnfdifl						
LD.	4644756	.2035337	-2.28	0.022	8633943	0655569
L2D.	1773122	.2119005	-0.84	0.403	5926295	.2380052
L3D.	3143203	.1790684	-1.76	0.079	6652879	.0366474
L4D.	1063604	.1671541	-0.64	0.525	4339765	.2212557
	1					
_cons	.0031523	.2003204	0.02	0.987	3894686	.3957731

Appendix 6.2: VAR(p) for Labor-Intensive Sector

. var D1.pagri D1.lnfdifl, lags(1/4) lutstats

Vector autoregression

Sample: 1996	- 2	021		No. of obs	=	26
Log likelihood	=	-438.292	(lutstats)	AIC	=	29.26979
FPE	=	6.37e+12		HQIC	=	29.49273
<pre>Det(Sigma_ml)</pre>	=	1.50e+12		SBIC	=	30.044
		_	 _	1.10 - 1.10		

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_pagri D_lnfdifl	9	3.5e+06 .563645	0.2010	10.19967 9.137079	0.2020

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
D_pagri						
pagri						
LD.	.1711671	.2089917	0.82	0.413	2384491	.5807833
L2D.	1192305	.1907564	-0.63	0.532	4931063	.2546452
L3D.	.3481681	.1988311	1.75	0.080	0415337	.7378699
L4D.	.0804595	.2189373	0.37	0.713	3486496	.5095687
lnfdifl						
LD.	-892093.2	1259519	-0.71	0.479	-3360706	1576519
L2D.	594870.6	1231712	0.48	0.629	-1819242	3008983
L3D.	1 1100011	1091053	-1.04	0.300	-3269036	1007813
L4D.	-1268231	1006898	-1.26	0.208	-3241716	705253.3
_cons	 1514841	900104.3	1.68	0.092	-249331.2	3279013
	+					
D_lnfdifl						
pagri						
LD.	1.68e-08	3.38e-08	0.50	0.620	-4.94e-08	8.29e-08
L2D.	-3.26e-08	3.08e-08	-1.06	0.291	-9.30e-08	2.78e-08
L3D.	4.08e-08	3.21e-08	1.27	0.204	-2.21e-08	1.04e-07
L4D.	-1.69e-08	3.54e-08	-0.48	0.632	-8.63e-08	5.24e-08
lnfdifl						
LD.	3572509	.203455	-1.76	0.079	7560153	.0415134
L2D.	1954859	.1989632	-0.98	0.326	5854467	.1944749
L3D.	2321983	.176242	-1.32	0.188	5776262	.1132296
L4D.	050941	.1626482	-0.31	0.754	3697255	.2678435

Appendix 7: Stata DO File

1. Set unit of analysis to time series

tsset year

2. Implement Phillips-Perron stationarity test

```
pperron deply
pperron D1.deply
pperron lnremit
pperron D.lnremit
pperron lnfdifl
pperron pmnfg
pperron D1.pmnfg
pperron wmnfg
pperron D1.wmnfg
pperron emnfg
pperron D1.emnfg
pperron pagri
pperron D1.pagri
pperron wagri
pperron D1.wagri
pperron D2.wagri
pperron eagri
pperron D1.eagri
```

3. Implement Engle-Granger cointegration test

```
egranger D1.deply D1.wmnfg D1.emnfg D1.pmnfg egranger D1.lnremit D1.wmnfg D1.emnfg D1.pmnfg egranger D1.lnfdifl D1.wmnfg D1.emnfg D1.pmnfg egranger D1.deply D1.wagri D1.eagri D1.pagri egranger D1.lnremit D1.wagri D1.eagri D1.pagri egranger D1.lnfdifl D1.wagri D1.eagri D1.pagri egranger D1.lnfdifl D1.pmnfg egranger D1.lnfdifl D1.pagri
```

4. Determine optimal lag order

```
varsoc D1.deply D1.wmnfg D1.emnfg D1.pmnfg varsoc D1.lnremit D1.wmnfg D1.emnfg D1.pmnfg varsoc D1.lnfdifl D1.wmnfg D1.emnfg D1.pmnfg varsoc D1.deply D1.wagri D1.eagri D1.pagri varsoc D1.lnremit D1.wagri D1.eagri D1.pagri varsoc D1.lnfdifl D1.wagri D1.eagri D1.pagri varsoc D1.lnfdifl D1.pmnfg varsoc D1.lnfdifl D1.pagri
```

5. Estimate VAR(p) model then generate OIRF and FEVD

```
var D1.deply D1.wmnfg D1.emnfg D1.pmnfg, lags (1/4) lutstats
irf create order1, step(10) set(myirf1, replace)
irf graph oirf, impulse(D.deply) response(D.wmnfg)
irf graph fevd, impulse(D.deply) response(D.wmnfg)
irf graph oirf, impulse(D.deply) response(D.emnfg)
irf graph fevd, impulse(D.deply) response(D.emnfg)
irf graph oirf, impulse(D.deply) response(D.pmnfg)
irf graph fevd, impulse(D.deply) response(D.pmnfg)
var D1.deply D1.wagri D1.eagri D1.pagri, lags(1/4) lutstats
irf create order1, step(10) set(myirf1, replace)
irf graph oirf, impulse(D.deply) response(D.wagri)
irf graph fevd, impulse(D.deply) response(D.wagri)
irf graph oirf, impulse(D.deply) response(D.eagri)
irf graph fevd, impulse(D.deply) response(D.eagri)
irf graph oirf, impulse(D.deply) response(D.pagri)
irf graph fevd, impulse(D.deply) response(D.pagri)
var D1.lnremit D1.wmnfg D1.emnfg D1.pmnfg, lags(1/4) lutstats
irf create order1, step(10) set(myirf1, replace)
irf graph oirf, impulse(D.lnremit) response(D.wmnfg)
irf graph fevd, impulse(D.lnremit) response(D.wmnfg)
irf graph oirf, impulse(D.lnremit) response(D.emnfg)
irf graph fevd, impulse(D.lnremit) response(D.emnfg)
irf graph oirf, impulse(D.lnremit) response(D.pmnfg)
irf graph fevd, impulse(D.lnremit) response(D.pmnfg)
var D1.lnremit D1.wagri D1.eagri D1.pagri, lags(1/4) lutstats
irf create order1, step(10) set(myirf1, replace)
irf graph oirf, impulse(D.lnremit) response(D.wagri)
irf graph fevd, impulse(D.lnremit) response(D.wagri)
irf graph oirf, impulse(D.lnremit) response(D.eagri)
irf graph fevd, impulse(D.lnremit) response(D.eagri)
irf graph oirf, impulse(D.lnremit) response(D.pagri)
irf graph fevd, impulse(D.lnremit) response(D.pagri)
var D1.lnfdifl D1.wmnfg D1.emnfg D1.pmnfg, lags(1/4) lutstats
irf create order1, step(10) set(myirf1, replace)
irf graph oirf, impulse(D.lnfdifl) response(D.wmnfg)
irf graph fevd, impulse(D.lnfdifl) response(D.wmnfg)
irf graph oirf, impulse(D.lnfdifl) response(D.emnfg)
irf graph fevd, impulse(D.lnfdifl) response(D.emnfg)
irf graph oirf, impulse(D.lnfdifl) response(D.pmnfg)
irf graph fevd, impulse(D.lnfdifl) response(D.pmnfq)
var D1.lnfdifl D1.wagri D1.eagri D1.pagri, lags(1/4) lutstats
irf create order1, step(10) set(myirf1, replace)
irf graph oirf, impulse(D.lnfdifl) response(D.wagri)
```

```
irf graph fevd, impulse (D.lnfdifl) response (D.wagri) irf graph oirf, impulse (D.lnfdifl) response (D.eagri) irf graph fevd, impulse (D.lnfdifl) response (D.eagri) irf graph oirf, impulse (D.lnfdifl) response (D.pagri) irf graph fevd, impulse (D.lnfdifl) response (D.pagri) var D1.pmnfg D1.lnfdifl, lags (1/4) lutstats irf create order1, step (10) set (myirf1, replace) irf graph oirf, impulse (D.pmnfg) response (D.lnfdifl) irf graph fevd, impulse (D.pmnfg) response (D.lnfdifl) var D1.pagri D1.lnfdifl, lags (1/4) lutstats irf create order1, step (10) set (myirf1, replace) irf graph oirf, impulse (D.pagri) response (D.lnfdifl) irf graph fevd, impulse (D.pagri) response (D.lnfdifl) irf graph fevd, impulse (D.pagri) response (D.lnfdifl)
```